
MATH 21B, JANUARY 31: MATRICES - ROWS, RANK, AND REDUCED

ROW ECHELON FORM

A matrix is said to be in reduced row echelon form if it satis�es the following properties:

(1) If a row contains nonzero entries, then the �rst nonzero entry is a 1, and is called a
leading 1.

(2) If a column contains a leading 1, then the other entries in that column are 0.
(3) If a row has a leading 1, then every row above it has a leading 1 somewhere to the left.

The number of leading 1's is called the rank. Pictorially, a matrix in reduced row echelon form
looks something like the following. 0 1 0 ∗ 0 ∗

0 0 1 ∗ 0 ∗
0 0 0 0 1 ∗


where the *'s can be any numbers, and the 1's shown are leading 1's.

(1) In the following systems, use Gauss-Jordan elimination (row operations) to reduce the coef-
�cient matrix to reduced row echelon form. Here, ~x is a column vector whose size is equal to
the number of variables of the system. How can we then use this form to �nd all solutions?
(Bonus: Can you see a relation between the rank of the system and the structure of the
solutions?)

(a)

1 −2 −1
2 −4 −2
2 −5 −4

 ~x =

24
0

 Solution: We use the �rst row to cancel out all entries below

it in the �rst column. 1 −2 −1 2
2 −4 −2 4
2 −5 −4 0

−
 0 0 0 0

2 −4 −2 4
2 −4 −2 4

 =

 1 −2 −1 2
0 0 0 0
0 −1 −2 −4


We now multiply the third row by −1, and swap it with the second row. We then use
the leading 1 (after negation) in this row to cancel out all other nonzero entries in the
second column. 1 −2 −1 2

0 1 2 4
0 0 0 0

+

 0 2 4 8
0 0 0 0
0 0 0 0

 =

 1 0 3 10
0 1 2 4
0 0 0 0


This equation now tells us that x1 = 10− 3x3 and x2 = 4− 2x3 . Thus, x3 is a free

variable, and it uniquely determines x1 and x2 (the variables corresponding to the
leading 1's). The general solution is thus

[
10− 3x3 4− 2x3 x3

]
.

(b)

 0 1 2 2 −2
1 0 3 0 4
−1 3 3 0 −10

 ~x =

15
4

 Solution: First, use the leading entry in the second

row to cancel out the −1 in the third row, and then swap this row with the �rst row.
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Then use the leading 1 in the second row to cancel out all other entries in the second
column. Finally, scale the third row so that its leading nonzero entry is a 1, and use
this 1 to cancel out all other nonzero entries in that column. 0 1 2 2 −2 1

1 0 3 0 4 5
−1 3 3 0 −10 4

→
 1 0 3 0 4 5

0 1 2 2 −2 1
0 3 6 0 −6 9

→
 1 0 3 0 4 5

0 1 2 2 −2 1
0 3 6 0 −6 9



→

 1 0 3 0 4 5
0 1 2 2 −2 1
0 0 0 −6 0 6

→
 1 0 3 0 4 5

0 1 2 2 −2 1
0 0 0 1 0 −1

→
 1 0 3 0 4 5

0 1 2 0 −2 3
0 0 0 1 0 −1


This �nal system tells us that

x1 = 5− 3x3 − 4x5 x2 = 3− 2x3 + 2x5 x4 = −1

The free variables are x4 and x5, and the variables corresponding to the leading 1's
are determined by the values of the free variables. The general solution is therefore[
5− 3x3 − 4x5 3− 2x3 + 2x5 x3 −1 x5

]
.

(c) This problem had a typo as written. As it was written, the problem was just a standard
row reduction analogous to (a). Here's the modi�ed version I had intended.1 −2 −1

2 −4 −2
2 −5 −4

 ~x =

25
3


Solution: Row reduction is completely analogous to that in (a). 1 −2 −1 2

2 −4 −2 5
2 −5 −4 0

→
 1 −2 −1 2

0 0 0 1
0 −1 −3 −4

→
 1 −2 −1 2

0 1 2 4
0 0 0 1



→

 1 0 3 10
0 1 2 4
0 0 0 1

→
 1 0 3 0

0 1 2 0
0 0 0 1


The last equation says 0 = 1, which is impossible! Therefore, there are no solutions to
the system.

Note: The only di�erence between (a) and (c) is the second entry in the constant vector
~b. This change takes us from in�nitely many solutions, to zero solutions! In fact, if
that entry is anything other than 4, we get zero solutions. There is a geometric way
to interpret what is happening here: in part (a), we have three planes intersecting in a
line. Changing that number 4 translates one of these planes vertically o� the line.

(2) Each of the following matrices is the reduced row echelon form of the augmented matrix of
an unknown system. How many solutions does the system have? Explain brie�y. 1 0 3

0 0 0
0 0 0

  1 0 1 2
0 1 3 4
0 0 0 1

 
1 0 0 0 3
0 1 0 0 −2
0 0 1 0 3
0 0 0 1 0
0 0 0 0 0
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Solution: The �rst matrix simply tells us that x1 = 3 (and the second and third row
are redundant). There are no restrictions on x2, the free variable, and therefore, there are
in�nitely many solutions (forming a line).

The second matrix has third equation 0 = 1, which means it is inconsistent and there are
no solutions.

The third matrix says x1 = 3, x2 = −2, x3 = 3, x4 = 0 and the �fth row is redundant.
There is exactly one solution.

Note: In general, any system of equations in n variables has either zero solutions, or has a
space of solutions that is a subspace sitting inside n-dimensional space. For example, if that
subspace is a point, then there is a unique solution. If it is a line, then there are in�nitely
many solutions, and we have one free variable. If it is a plane, then there are in�nitely many
solutions, and we have two free variables, and so on. We haven't precisely de�ned terms like
`subspace', but we will get to that soon!

(3) If you perform Gauss-Jordan elimination on a inconsistent system, how do you recognize
that the system is inconsistent?

Solution: This happens if and only if the reduced row echelon form of the augmented
matrix has a leading 1 in the last column - i.e., there is a row that is all 0's except for the
last entry.

(4) If A is an m×n matrix (height m, width n) such that A~x = ~b is consistent for every ~b ∈ Rm,
what can you say about rref(A)? (rref(A) refers to the reduced row echelon form of A)

I claim that this tells us rref(A) has no row with all zeroes. Suppose, for a contradiction,
that rref(A) has a row with all zeroes. To get rref(A), we had to perform some sequence of

row operations on A. Perform that same sequence of row operations on [A|~b]. It's clear that
there exists some particular vector ~b such that the resulting row-reduced version of [A|~b]
will have a row with all zeroes except for the last entry nonzero (in fact, this will happen

for almost all ~b's). This would imply that the system A~x = ~b is inconsistent, which is a
contradiction! Therefore, our initial assumption was wrong - rref(A) must have no rows
with all zeroes. (This method of argument is called proof by contradiction - it's very useful!)

There are a few other nice ways to interpret what's going on here. First of all, if rref(A)
has no rows with all zeroes, this means that every row has a leading 1. In particular, this
implies A has rank m. Its rank (the number of leading 1's) is as large as possible, and

the space of solutions to A~x = ~b is as small as possible (it will be n − m). There's a

geometric way to see this too: each row of [A|~b] corresponds to a hyperplane in Rn (i.e., an
(n − 1)-dimensional subspace). These hyperplanes all intersect in some way, and changing
~b translates these hyperplanes around. The statement that this system is consistent for all
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~b, means that no matter how we translate these hyperplanes around, they will still intersect
(in particular, the situation in 1(a) is impossible).

(5) If the reduced row echelon form of a matrix A has a row of all zeroes, what does this imply
about the rows of A? If there are two rows of all zeroes?

Solution: The reduced row echelon form is obtained by adding, scaling, and swapping
rows. Therefore, if rref(A) has a row of all zeroes, this means that some row of A can be
obtained by a sum of scaled versions of the other rows. We say that this row is a linear
combination of the other rows. If there are two rows of all zeroes, it means that there are
some two rows of A which can each be written as a linear combination of the other m − 2
rows (if there are m rows).

(6) Find all values of a for which the system

[
2 a
3 6

]
~x =

[
1
0

]
is consistent.

Solution 1: Row-reduce the augmented matrix.[
2 a 1
3 6 0

]
→
[
2 a 1
1 2 0

]
→
[
0 a− 4 1
1 2 0

]
→
[
1 2 0
0 a− 4 1

]
If a 6= 4, then the second row has a leading 1 in the second entry, and the system is consistent
with the unique solution x1 = − 2

a−4 , x2 = 1
a−4 . If a = 4, then the second row is 0 0 1 and

the system is inconsistent.

Solution 2: This solution involves more advanced concepts which we will get to. I don't
expect you to be able to construct this solution yourself, but I recommend reading it and trying

to understand it! The equation

[
2 a
3 6

] [
x1
x2

]
=

[
1
0

]
is equivalent to the vector equation

x1

[
2
3

]
+ x2

[
a
6

]
=

[
1
0

]
That is, we are looking for a linear combination of the vectors

[
2
3

]
and

[
a
6

]
which equals[

1
0

]
. We see that if a = 4, then the second vector is double the �rst, and so any linear

combination of the two will just equal a multiple of

[
2
3

]
- there is therefore no way to obtain[

1
0

]
! On the other hand, if a 6= 4, then

x1

[
2
3

]
+ x2

[
a
6

]
= x1

[
2
3

]
+ x2

([
a− 4
0

]
+

)[
4
6

]
) = (x1 + 2x2)

[
2
3

]
+ x2

[
a− 4
0

]
and so if we set x1 + 2x2 = 0 and x2 = 1

a−4 , we will have found our solution. Indeed, this

can be done by letting x1 = − 2
a−4 .
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