Math 21b, April 25: Some more PDEs and Review

1. Find the solution $f(x, t)$ to the inhomogeneous partial differential equation

$$
f_{t}=-f_{x x}+\sin (7 t)
$$

given the initial condition $f(x, 0)=x$. Use the following steps:

- Find the general form of the solution to the homogeneous equation using Fourier series in x.
- Solve for the initial Fourier coefficients by finding a sine series for $f(x, 0)=x$.
- Find a particular solution $f_{\text {part }}(x, t)$ to the above inhomogeneous equation using the cookbook method, such that this particular solution satisfies $f_{\text {part }}(x, 0)=0$. Trick: find a solution to $f_{t}=\sin (7 t)$, and the just use this particular solution!
- Add these two to get the general form of the solution for the inhomogeneous equation.
- Solve for the initial Fourier coefficients by finding a sine series for $f(x, 0)=x$.

Solution: First, we find the general solution to the homogeneous equation $f_{t}=-f_{x x}$ using Fourier expansion and then plugging into the homogeneous equation

$$
\begin{gathered}
f(x, t)=\sum_{k} b_{k}(t) \sin (k x) \Longrightarrow b_{k}^{\prime}(t)=k^{2} b_{k}(t) \\
\Longrightarrow b_{k}(t)=C_{k} e^{k^{2} t}
\end{gathered}
$$

for some constants C_{1}, C_{2}, \ldots. Then the general solution is $f_{\text {hom }}(x, t)=\sum_{k} C_{k} e^{k^{2} t} \sin (k x)$.
Next, we find a particular solution to the inhomogeneous equation using the cookbook method. We guess $f(x, t)=A \cos (7 t)+B \sin (7 t)$ and plug this into $f_{t}=-f_{x x}+\sin (7 t)$ and solve for A, B. Since f depends on only t, we are just solving $f_{t}=\sin (7 t)$, and we get that $A=-1 / 7, B=0$. Thus, $f(x, t)=-\frac{1}{7} \cos (7 t)$ is a particular solution. We need to have a solution which satisfies $f_{\text {part }}(x, 0)=0$, so we add the constant $1 / 7$ to our guess to get $f_{\text {part }}(x, t)=\frac{1}{7}-\frac{1}{7} \cos (7 t)$.
Therefore, the general solution ${ }^{1}$ to the inhomogeneous differential equation is $f(x, t)=\frac{1}{7}-\frac{1}{7} \cos (7 t)+$ $\sum_{k} C_{k} e^{k^{2} t} \sin (k x)$. We now plug in $t=0$

$$
f(x, 0)=0+\sum_{k} C_{k} \sin (k x)
$$

and set it equal to the initial condition (with its Fourier coefficients)

$$
f(x, 0)=x=\sum_{k}(-1)^{k+1} \frac{2}{k} \sin (k x) \Longrightarrow C_{k}=(-1)^{k+1} \frac{2}{k}
$$

[^0]Therefore, we get the final solution

$$
f(x, t)=\frac{1}{7}-\frac{1}{7} \cos (7 t)+\sum_{k}(-1)^{k+1} \frac{2}{k} e^{k^{2} t} \sin (k x)
$$

2. (HW31 \#4) A laundry line is excited by the wind. It satisfies the differential equation

$$
u_{t t}=u_{x x}+\cos (t)+\cos (3 t)
$$

with initial conditions $u(x, 0)=4 \sin (5 x)+10 \sin (6 x)$ and $u_{t}(x, 0)=0$. Find the function $u(x, t)$ which satisfies the differential equation.

Solution: First, we find the general solution to the homogeneous PDE $u_{t t}=u_{x x}$

$$
\begin{aligned}
u(x, t) & =\sum_{k} b_{k}(t) \sin (k x) \Longrightarrow b_{k}^{\prime \prime}(t)=-k^{2} b_{k}(t) \\
& \Longrightarrow b_{k}(t)=C_{k} \cos (k t)+D_{k} \sin (k t)
\end{aligned}
$$

for some constants $C_{1}, D_{1}, C_{2}, D_{2}, \ldots$. Then the general solution is $u_{\mathrm{hom}}(x, t)=\sum_{k}\left(C_{k} \cos (k t)+D_{k} \sin (k t)\right) \sin (k x)$.
Next, we find a particular solution using the cookbook method. We first find a particular solution to $u_{t t}=\cos (t): u(x, t)=-\cos (t)$ works. Similarly, for $u_{t t}=\cos (3 t), u(t)=-\frac{1}{9} \cos (3 t)$ works. Thus $u(t)=-\cos (t)-\frac{1}{9} \cos (3 t)$ is a particular solution to the inhomogeneous equation: in fact, this plus ANY linear function $A t+B$ is a solution (because the second derivative of a linear function is zero). We must choose $u_{\text {part }}$ so that $u_{\text {part }}(0)$ and $u_{\text {part }}^{\prime}(0)$ are both zero: we see that

$$
u_{\mathrm{part}}(t)=\frac{10}{9}-\cos (t)-\frac{1}{9} \cos (3 t)
$$

works.
Thus, the general solution to the inhomogeneous differential equation is $u(x, t)=\frac{10}{9}-\cos (t)-\frac{1}{9} \cos (3 t)+$ $\sum_{k}\left(C_{k} \cos (k t)+D_{k} \sin (k t)\right) \sin (k x)$. From this general formula for $u(x, t)$, we calculate $u(x, 0)$ and $u_{t}(x, 0)$

$$
\begin{gathered}
u(x, 0)=\frac{10}{9}-\cos (0)-\frac{1}{9} \cos (0)+\sum_{k} C_{k} \sin (k x)=\sum_{k} C_{k} \sin (k x) \\
u_{t}(x, 0)=\sin (0)+\frac{1}{3} \sin (0)+\sum_{k} k D_{k} \sin (k x)=\sum_{k} k D_{k} \sin (k x)
\end{gathered}
$$

(Note that $u_{\text {part }}(0)$ and $u_{\text {part }}^{\prime}(0)$ are both zero because we chose them that way! That's why those terms above disappear.) We now set these equal to the initial conditions $u(x, 0)=4 \sin (5 x)+10 \sin (6 x)$ and $u_{t}(x, 0)=0$ to obtain $C_{5}=4, C_{6}=10$, and all of the rest of the constants are equal to zero. Therefore,

$$
\begin{gathered}
u(x, t)=\frac{10}{9}-\cos (t)-\frac{1}{9} \cos (3 t)+\sum_{k}\left(C_{k} \cos (k t)+D_{k} \sin (k t)\right) \sin (k x) \\
\quad=\frac{10}{9}-\cos (t)-\frac{1}{9} \cos (3 t)+4 \cos (5 t) \sin (5 t)+10 \cos (6 t) \sin (6 t)
\end{gathered}
$$

[^0]: ${ }^{1}$ Subject to the condition that it is zero at the boundaries when $t=0$.

