Math 21b Apr 18: Fourier Series and Partial Differential Equations

Reminder: Let $f(x)$ be a piecewise smooth function defined on the interval $[-\pi, \pi]$. Then it can be expressed via its Fourier series:

$$
f(x)=\frac{a_{0}}{\sqrt{2}}+\sum_{k=1}^{\infty} a_{k} \cos (k x)+\sum_{k=1}^{\infty} b_{k} \sin (k x)
$$

Moreover, if f is an even function (i.e. $f(-x)=f(x)$), then all of the b_{k} 's are zero, and if f is an odd function (i.e. $f(-x)=-f(x)$) then all of the a_{k} 's are zero. The Fourier series of $f(x)$ is the expression of $f(x)$ in terms of functions which form an orthonormal eigenbasis for the operator D^{2}.

Parseval's identity comes from computing the length in two ways:

$$
\langle f, f\rangle=a_{0}^{2}+\sum_{k=1}^{\infty} a_{k}^{2}+\sum_{k=1}^{\infty} b_{k}^{2}
$$

1. Recall $f(x)=x$ has Fourier series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{2}{k} \sin (k x)$. Apply Parseval's identity: what identity do you get?

Solution: You get the equation

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} d x=\sum_{k=1}^{\infty} \frac{4}{k^{2}}
$$

The left hand side is equal to

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} d x=\left.\frac{x^{3}}{3 \pi}\right|_{-\pi} ^{\pi}=\frac{2}{3} \pi^{2}
$$

Therefore, we get $\sum_{k=1}^{\infty} \frac{4}{k^{2}}=\frac{2}{3} \pi^{2}$, or equivalently, $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$. This is a famous identity called the Basel problem, and has relevance in number theory.

Today we'll apply Fourier series to find solutions to two example partial differential equations: the heat equation and the wave equation.
2. (The Heat Equation) Let $f(x, t)$ be a function of position $x \in[0, \pi]$ and time $t \geq 0$, governed by the partial differential equation

$$
\frac{\partial}{\partial t} f=\frac{\partial^{2}}{\partial x^{2}} f
$$

We abbreviate this as $f_{t}=f_{x x}$ for brevity.
(a) Write a Fourier decomposition $f(x, t)=\sum_{k=1}^{\infty} b_{k}(t) \sin (k x)$ where the coefficients $b_{1}(t), b_{2}(t), b_{3}(t), \ldots$ are varying with time. When you plug this into the heat equation, what differential equations do you get for the functions $b_{k}(t)$?

Solution: When we plug the Fourier series $f(x, t)=\sum_{k=1}^{\infty} b_{k}(t) \sin (k x)$ into the differential equation, we get

$$
\sum_{k=1}^{\infty} b_{k}^{\prime}(t) \sin (k x)=\sum_{k=1}^{\infty} b_{k}(t)\left(-k^{2}\right) \sin (k x)
$$

Both sides here have to have all Fourier coefficients equal, and therefore,

$$
b_{k}^{\prime}(t)=-k^{2} b_{k}(t) \quad k=1,2,3, \ldots
$$

(b) Write down a general solution for each $b_{k}(t)$.

Solution: The general solution is $b_{k}(t)=C_{k} e^{-k^{2} t}$ where $C_{k}=b_{k}(0)$ can be any constant. In particular, this means

$$
f(x, 0)=\sum_{k=1}^{\infty} C_{k} \sin (k x) \Longrightarrow f(x, t)=\sum_{k=1}^{\infty} C_{k} e^{-k^{2} t} \sin (k x)
$$

(c) Suppose we are given the initial condition $f(x, 0)=\sin (x)-\sin (3 x)$. What are the initial Fourier coefficients $b_{k}(0)$? Use these to write down the solution $f(x, t)$.

Solution: The initial Fourier coefficients $b_{k}(0)$ are $b_{1}(0)=1, b_{3}(0)=-1$, and $b_{k}(0)=0$ for $k=2,4,5,6, \ldots$. Therefore, the solution is $f(x, t)=e^{-t} \sin (x)-e^{-9 t} \sin (3 x)$.

Suppose a metal rod of length π is heated uniformly to $50^{\circ} \mathrm{C}$, and then its ends are plunged into ice baths at $0^{\circ} \mathrm{C}$: you want to determine how the entire rod cools over time. The temperature satisfies the heat equation $f_{t}=f_{x x}$.
(d) We have the initial condition $f(x, 0)=50$ and boundary conditions $f(0, t)=f(\pi, t)=0$. Calculate the initial Fourier coefficients $b_{k}(0)$ and use these to write down the solution $f(x, t)$.

Solution: To calculate the Fourier coefficients of $f(x, 0)=50$, we calculate

$$
b_{k}(0)=\frac{2}{\pi} \int_{0}^{\pi} 50 \sin (k x) d x=-\left.\frac{100}{k \pi} \cos (k x)\right|_{0} ^{\pi}=\left\{\begin{array}{lll}
\frac{200}{k \pi} & k & \text { odd } \\
0 & k & \text { even }
\end{array}\right.
$$

That is, $50=\frac{200}{\pi} \sin (x)+\frac{200}{3 \pi} \sin (3 x)+\frac{200}{5 \pi} \sin (5 x)+\ldots$. Thus,

$$
f(x, t)=\frac{200}{\pi} e^{-t} \sin (x)+\frac{200}{3 \pi} e^{-9 t} \sin (3 x)+\frac{200}{5 \pi} e^{-25 t} \sin (5 x)+\ldots
$$

This can be expressed in sum notation as

$$
f(x, t)=\frac{200}{\pi} \sum_{m=0}^{\infty} \frac{1}{2 m+1} e^{-(2 m+1)^{2} t} \sin ((2 m+1) x)
$$

(e) (Adjusting the boundary conditions) Suppose instead of both being plunged into ice baths, the two ends of the metal rod are left alone, i.e. boundary conditions $f(t, 0)=f(t, \pi)=50$. What happens to the temperature over time?

Solution: The temperature will remain constant throughout the rod at $50^{\circ} \mathrm{C}$.
(f) Let f_{p} be the solution that you found in part (e). Show that if f is any solution to the heat equation satisfying the boundary conditions $f(0, t)=f(\pi, t)=50$, then $g=f-f_{p}$ is a solution to the heat equation satisfying $g(0, t)=g(\pi, t)=0$.

General strategy:

- First normalize the boundary conditions: subtract a linear function f_{p} from $f(x, 0)$ so that $g=f-f_{p}$ is equal to 0 at both $x=0$ and $x=\pi$.
- Fourier decompose g with a sine series, let its Fourier coefficients be $b_{1}(0), b_{2}(0), \ldots$.
- The heat equation gives us differential equations for the behavior of $b_{k}(t)$: solve these to obtain the functions $b_{k}(t)$, which are the Fourier coefficients of $g(x, t)$. Note that as $t \rightarrow \infty$, $g(x, t) \rightarrow 0$ for all x.
- Add back on the linear function f_{p} to obtain the solution $f(x, t)$.

3. (The Wave Equation) Consider a partial differential equation which might model the propagation of a wave through a string:

$$
u_{t t}=u_{x x}
$$

We will assume that we have boundary conditions $u(0, t)=u(\pi, t)=0$, i.e. the two ends of the string are held fixed.
(a) As before, write down a Fourier decomposition for $u(x, t)$ in terms of a sine series $\sum_{k=1}^{\infty} b_{k}(t) \sin (k x)$. What are the differential equations for the $b_{k}(t)$'s? Write down a general solution for each $b_{k}(t)$.

Solution: Let $u(x, t)=\sum_{k=1}^{\infty} b_{k}(t) \sin (k x)$. Then if we plug this into the different equation, we get

$$
\sum_{k=1}^{\infty} b_{k}^{\prime \prime}(t) \sin (k x)=\sum_{k=1}^{\infty} b_{k}(t)\left(-k^{2}\right) \sin (k x)
$$

$$
\Longrightarrow b_{k}^{\prime \prime}(t)=-k^{2} b_{k}(t)
$$

This differential equation has the general solution $b_{k}(t)=C_{k} \cos (k t)+D_{k} \sin (k t)$. If we have initial conditions $b_{k}(0), b_{k}^{\prime}(0)$, then we get $b_{k}(0)=C_{k}$ and $b_{k}^{\prime}(0)=k D_{k}$, i.e.

$$
b_{k}(t)=b_{k}(0) \cos (k t)+\frac{b_{k}^{\prime}(0)}{k} \sin (k t)
$$

(b) Suppose that we have initial conditions $u(x, 0)=\sin (5 x)+3 \sin (8 x)$ and $u_{t}(x, 0)=2 \sin (7 x)+$ $\sin (8 x)$. Fourier decompose these to find $b_{k}(0)$ and $b_{k}^{\prime}(0)$, and thus solve for $b_{k}(t)$ and find the solution $u(x, t)$.

Solution: The Fourier decomposition is essentially given by the forms of these functions. Using the boxed formula above, we get

$$
\begin{gathered}
b_{5}(t)=1 \cdot \cos (5 t)+0 \cdot \sin (5 t)=\cos (5 t) \\
b_{7}(t)=0 \cdot \cos (7 t)+2 \cdot \sin (7 t)=2 \sin (7 t) \\
b_{8}(t)+3 \cdot \cos (8 t)+1 \cdot \sin (8 t)=3 \cos (8 t)+\sin (8 t)
\end{gathered}
$$

and all other Fourier coefficients $b_{k}(t)$ are just zero. Therefore,

$$
u(x, t)=\sum_{k=1}^{\infty} b_{k}(t) \sin (k x)=\cos (5 t) \sin (5 x)+2 \sin (7 t) \sin (7 x)+(3 \cos (8 t)+\sin (8 t)) \sin (8 x)
$$

4. Find $f(x, t)$ such that

$$
f_{t}=f_{x x}+\cos (t)
$$

given initial conditions $f(x, 0)=\sin (x)-\sin (3 x)$. (Hint: first find a particular solution $f_{\text {part }}$ which depends only on t, and find the general solution $f_{\text {hom }}$ to the homogeneous equation $f_{t}=f_{x x}$. Then find the correct sum of these which gives the given initial conditions.)

Solution: A particular solution to this equation is $f(x, t)=\sin (t)$: its partial derivative with respect to t is $\cos (t)$ and with respect to x is zero (because the function has no x-dependence). We already know the general solution to the homogeneous equation $f_{t}=f_{x x}$ is

$$
f_{\mathrm{hom}}(x, t)=\sum_{k=1}^{\infty} C_{k} e^{-k^{2} t} \sin (k x)
$$

where C_{1}, C_{2}, \ldots are arbitrary constants. Therefore, the general solution to the nonhomogeneous equation above is

$$
f(x, t)=\sin (t)+\sum_{k=1}^{\infty} C_{k} e^{-k^{2} t} \sin (k x)
$$

Set $t=0$ and set this equal to the initial condition $f(x, 0)$.

$$
0+\sum_{k=1}^{\infty} C_{k} \cdot 1 \cdot \sin (k x)=\sin (x)-\sin (3 x)
$$

and therefore $C_{1}=1, C_{3}=-1$, and $C_{k}=0$ for $k=2,4,5, \ldots$ So the desired solution is

$$
f(x, t)=\sin (t)+\sin (x)-\sin (3 x)
$$

MORE EXAMPLE PROBLEMS BELOW

5. Find the solution to the heat equation

$$
f_{t}=5 f_{x x}
$$

given the initial condition $f(x, 0)=\cos (x)$ on $0 \leq x \leq \pi$.

Solution: First, Fourier expand $f(x, t)=\sum_{k=1}^{\infty} b_{k}(t) \sin (k x)$, and plug this into the differential equation. We get

$$
b_{k}^{\prime}(t)=-5 k^{2} b_{k}(t) \Longrightarrow b_{k}(t)=b_{k}(0) e^{-5 k^{2} t}
$$

Now we find the Fourier coefficients of $f(x, 0)$

$$
C_{k}=\frac{2}{\pi} \int_{0}^{\pi} \cos (x) \sin (k x) d x=\frac{1}{\pi} \int_{0}^{\pi}(\sin ((k+1) x)+\sin ((k-1) x)) d x
$$

this is using the trig identities $\sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B)$ and $\sin (A-B)=\sin (A) \cos (B)-$ $\cos (A) \sin (B)$.

$$
=\left.\frac{1}{\pi}\left(-\frac{\cos ((k+1) x)}{k+1}-\frac{\cos ((k-1) x)}{k-1}\right)\right|_{0} ^{\pi}
$$

When k is odd, this is zero, and when k is even, it equals

$$
=\frac{2}{\pi}\left(\frac{1}{k+1}+\frac{1}{k-1}\right)=\frac{4 k}{\left(k^{2}-1\right) \pi}
$$

Thus, $f(x, 0)=\cos (x)$ has the sine series

$$
\begin{aligned}
f(x, 0)=\cos (x)=\frac{8}{3 \pi} \sin (2 x)+ & \frac{16}{15 \pi} \sin (4 x)+\frac{24}{35 \pi} \sin (6 x)+\ldots=\sum_{k \text { even }} \frac{4 k}{\left(k^{2}-1\right) \pi} \sin (k x) \\
& =\sum_{m=1}^{\infty} \frac{8 m}{\left(4 m^{2}-1\right) \pi} \sin (2 m x)
\end{aligned}
$$

It follows that $f(x, t)$ has the sine series

$$
\begin{gathered}
f(x, t)=\frac{8}{3 \pi} e^{-20 t} \sin (2 x)+\frac{16}{15 \pi} e^{-80 t} \sin (4 x)+\ldots=\sum_{k \text { even }} \frac{4 k}{\left(k^{2}-1\right) \pi} e^{-5 k^{2} t} \sin (k x) \\
=\sum_{m=1}^{\infty} \frac{8 m}{\left(4 m^{2}-1\right) \pi} e^{-20 m^{2} t} \sin (2 m x)
\end{gathered}
$$

6. Find the general solution to the equation

$$
u_{t t}=u_{x x x x x x}+2 u_{x x x x}+u_{x x}
$$

Solution: Fourier expand $u(x, t)=\sum_{k=1}^{\infty} b_{k}(t) \sin (k x)$, and plug this into the differential equation.

$$
b_{k}^{\prime \prime}(t)=\left(-k^{6}+2 k^{4}-k^{2}\right) b_{k}(t) \Longrightarrow b_{k}(t)=C_{k} \cos \left(\sqrt{k^{6}-2 k^{4}+k^{2}} x\right)+D_{k} \sin \left(\sqrt{k^{6}-2 k^{4}+k^{2}} x\right)
$$

Since $\sqrt{k^{6}-2 k^{4}+k^{2}}= \pm k\left(k^{2}-1\right)$, this means $b_{k}(t)=C_{k} \cos \left(k\left(k^{2}-1\right) x\right)+D_{k} \sin \left(k\left(k^{2}-1\right) x\right)$.
(Now, if we were given initial conditions $u(x, 0)$ and $u_{t}(x, 0)$, we could find their respective Fourier expansions

$$
\begin{aligned}
u(x, 0) & =\sum_{k} b_{k}(0) \sin (k x) \\
u_{t}(x, 0) & =\sum_{k} b_{k}^{\prime}(0) \sin (k x)
\end{aligned}
$$

and use the values of $b_{k}(0), b_{k}^{\prime}(0)$ to calculate the coefficients C_{k}, D_{k} for every k.)

