Math 21b Apr 18: Fourier Series and Partial Differential Equations

Reminder: Let $f(x)$ be a piecewise smooth function defined on the interval $[-\pi, \pi]$. Then it can be expressed via its Fourier series:

$$
f(x)=\frac{a_{0}}{\sqrt{2}}+\sum_{k=1}^{\infty} a_{k} \cos (k x)+\sum_{k=1}^{\infty} b_{k} \sin (k x)
$$

Moreover, if f is an even function (i.e. $f(-x)=f(x)$), then all of the b_{k} 's are zero, and if f is an odd function (i.e. $f(-x)=-f(x)$) then all of the a_{k} 's are zero. The Fourier series of $f(x)$ is the expression of $f(x)$ in terms of functions which form an orthonormal eigenbasis for the operator D^{2}.

Parseval's identity comes from computing the length in two ways:

$$
\langle f, f\rangle=a_{0}^{2}+\sum_{k=1}^{\infty} a_{k}^{2}+\sum_{k=1}^{\infty} b_{k}^{2}
$$

1. Recall $f(x)=x$ has Fourier series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{2}{k} \sin (k x)$. Apply Parseval's identity: what identity do you get?

Today we'll apply Fourier series to find solutions to two example partial differential equations: the heat equation and the wave equation.
2. (The Heat Equation) Let $f(x, t)$ be a function of position $x \in[0, \pi]$ and time $t \geq 0$, governed by the partial differential equation

$$
\frac{\partial}{\partial t} f=\frac{\partial^{2}}{\partial x^{2}} f
$$

We abbreviate this as $f_{t}=f_{x x}$ for brevity.
(a) Write a Fourier decomposition $f(x, t)=\sum_{k=1}^{\infty} b_{k}(t) \sin (k x)$ where the coefficients $b_{1}(t), b_{2}(t), b_{3}(t), \ldots$ are varying with time. When you plug this into the heat equation, what differential equations do you get for the functions $b_{k}(t)$?
(b) Write down a general solution for each $b_{k}(t)$.
(c) Suppose we are given the initial condition $f(x, 0)=\sin (x)-\sin (3 x)$. What are the initial Fourier coefficients $b_{k}(0)$? Use these to write down the solution $f(x, t)$.

Suppose a metal rod of length π is heated uniformly to $50^{\circ} \mathrm{C}$, and then its ends are plunged into ice baths at $0^{\circ} \mathrm{C}$: you want to determine how the entire rod cools over time. The temperature satisfies the heat equation $f_{t}=f_{x x}$.
(d) We have the initial condition $f(x, 0)=50$ and boundary conditions $f(0, t)=f(\pi, t)=0$. Calculate the initial Fourier coefficients $b_{k}(0)$ and use these to write down the solution $f(x, t)$.
(e) (Adjusting the boundary conditions) Suppose instead of both being plunged into ice baths, the two ends of the metal rod are left alone, i.e. boundary conditions $f(t, 0)=f(t, \pi)=50$. What happens to the temperature over time?
(f) Let f_{p} be the solution that you found in part (e). Show that if f is any solution to the heat equation satisfying the boundary conditions $f(0, t)=f(\pi, t)=50$, then $g=f-f_{p}$ is a solution to the heat equation satisfying $g(0, t)=g(\pi, t)=0$.

General strategy:

- First normalize the boundary conditions: subtract a linear function f_{p} from $f(x, 0)$ so that $g=f-f_{p}$ is equal to 0 at both $x=0$ and $x=\pi$.
- Fourier decompose g with a sine series, let its Fourier coefficients be $b_{1}(0), b_{2}(0), \ldots$.
- The heat equation gives us differential equations for the behavior of $b_{k}(t)$: solve these to obtain the functions $b_{k}(t)$, which are the Fourier coefficients of $g(x, t)$. Note that as $t \rightarrow \infty$, $g(x, t) \rightarrow 0$ for all x.
- Add back on the linear function f_{p} to obtain the solution $f(x, t)$.

3. (The Wave Equation) Consider a partial differential equation which might model the propagation of a wave through a string:

$$
u_{t t}=u_{x x}
$$

We will assume that we have boundary conditions $u(0, t)=u(\pi, t)=0$, i.e. the two ends of the string are held fixed.
(a) As before, write down a Fourier decomposition for $u(x, t)$ in terms of a sine series $\sum_{k=1}^{\infty} b_{k}(t) \sin (k x)$. What are the differential equations for the $b_{k}(t)$'s? Write down a general solution for each $b_{k}(t)$.
(b) Suppose that we have initial conditions $u(x, 0)=\sin (5 x)+3 \sin (8 x)$ and $u_{t}(x, 0)=2 \sin (7 x)+$ $\sin (8 x)$. Fourier decompose these to find $b_{k}(0)$ and $b_{k}^{\prime}(0)$, and thus solve for $b_{k}(t)$ and find the solution $u(x, t)$.
4. Find $f(x, t)$ such that

$$
f_{t}=f_{x x}+\cos (t)
$$

given initial conditions $f(x, 0)=\sin (x)-\sin (3 x)$. (Hint: first find a particular solution $f_{\text {part }}$ which depends only on t, and find the general solution $f_{\text {hom }}$ to the homogeneous equation $f_{t}=f_{x x}$. Then find the correct sum of these which gives the given initial conditions.)

