Math 21b Apr 18: The Fourier Transform

Today, we'll be studying the linear space C_{per}^{∞} of 2π -periodic functions. Such functions are completely determined by knowing their value on the interval $[-\pi,\pi]$, so we will sometimes just think of these as functions defined on the interval $[-\pi,\pi]$.

1. The $inner\ product$ of two functions f and g in $C_{\rm per}^\infty$ is defined to be

$$\langle f,g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x)dx$$

Compute the inner product $\langle \cos(x), \sin(x) \rangle$.

- 2. The *length* of a function f(x) is defined to be $||f|| = \sqrt{\langle f, f \rangle}$.
 - (a) Compute $||\cos(x)||$ and $||\sin(x)||$.

•

(b) What about $||\cos(kx)||$ and $||\sin(kx)||$, for k a positive integer? (Hint: this should be quite quick from the previous calculation.)

A collection of functions f_1, \ldots, f_n is called *orthonormal* if they satisfy two properties:

•

3. Argue that we've shown the functions $1/\sqrt{2}$, $\cos(x)$, $\sin(x)$ are orthonormal.

4. Let a, b be positive integers. Can you calculate $(\sin(ax), \cos(bx))$?

Fact: The functions $1/\sqrt{2}, \cos(x), \sin(x), \cos(2x), \sin(2x), \cos(3x), \sin(3x), \dots$ are orthonormal.

5. Recall that if u_1, \ldots, u_m in \mathbb{R}^n is an orthonormal set of vectors, then

$$\operatorname{proj}_V(v) = (v \cdot u_1)u_1 + (v \cdot u_2)u_2 + \ldots + (v \cdot u_m)u_m$$

is the projection of v onto the span of u_1, \ldots, u_m .

(a) Consider the function f(x) = x defined on the interval $[-\pi, \pi]$. Calculate its projection onto the space spanned by the orthonormal functions $1/\sqrt{2}, \cos(x), \sin(x)$.

(b) In general, let T_n be the space defined by

$$T_n = \operatorname{span}(1/\sqrt{2}, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots, \cos(nx), \sin(nx))$$

Calculate the projection of f(x) = x onto T_n .

(extra space)

Fourier series: Let f(x) be a piecewise continuous function defined on $[-\pi, \pi]$. Then it is equal to its *Fourier series*

$$f(x) = \frac{a_0}{\sqrt{2}} + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$

where the coefficients are defined by

$$a_0 = \langle f(x), 1/\sqrt{2} \rangle$$
 $a_n = \langle f(x), \cos(nx) \rangle$ $b_n = \langle f(x), \sin(nx) \rangle$

This expression may be thought of as $\operatorname{proj}_{T_{\infty}}(f(x))$, the projection of f(x) onto the space of all trigonometric polynomials.

6. Let f(x) be defined on $[-\pi, \pi]$ by

$$f(x) = \begin{cases} 1 & \text{if } -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ 0 & \text{otherwise} \end{cases}$$

Calculate the Fourier coefficients. What is $\operatorname{proj}_{T_{99}}(f(x))$?

(extra space)

Let f(x) = x (problem 5). Here are the graphs of $f_n = \operatorname{proj}_{T_n} f$ for various values of n.

