Math 21b Apr 18: The Fourier Transform

Today, we'll be studying the linear space $C_{\text {per }}^{\infty}$ of 2π-periodic functions. Such functions are completely determined by knowing their value on the interval $[-\pi, \pi]$, so we will sometimes just think of these as functions defined on the interval $[-\pi, \pi]$.

1. The inner product of two functions f and g in $C_{\text {per }}^{\infty}$ is defined to be

$$
\langle f, g\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x
$$

Compute the inner product $\langle\cos (x), \sin (x)\rangle$.
2. The length of a function $f(x)$ is defined to be $\|f\|=\sqrt{\langle f, f\rangle}$.
(a) Compute $\|\cos (x)\|$ and $\|\sin (x)\|$.
(b) What about $\|\cos (k x)\|$ and $\|\sin (k x)\|$, for k a positive integer? (Hint: this should be quite quick from the previous calculation.)

A collection of functions f_{1}, \ldots, f_{n} is called orthonormal if they satisfy two properties:
-
3. Argue that we've shown the functions $1 / \sqrt{2}, \cos (x), \sin (x)$ are orthonormal.
4. Let a, b be positive integers. Can you calculate $\langle\sin (a x), \cos (b x)\rangle$?

Fact: The functions

$$
1 / \sqrt{2}, \cos (x), \sin (x), \cos (2 x), \sin (2 x), \cos (3 x), \sin (3 x), \ldots
$$

are orthonormal.
5. Recall that if u_{1}, \ldots, u_{m} in \mathbb{R}^{n} is an orthonormal set of vectors, then

$$
\operatorname{proj}_{V}(v)=\left(v \cdot u_{1}\right) u_{1}+\left(v \cdot u_{2}\right) u_{2}+\ldots+\left(v \cdot u_{m}\right) u_{m}
$$

is the projection of v onto the span of u_{1}, \ldots, u_{m}.
(a) Consider the function $f(x)=x$ defined on the interval $[-\pi, \pi]$. Calculate its projection onto the space spanned by the orthonormal functions $1 / \sqrt{2}, \cos (x), \sin (x)$.
(b) In general, let T_{n} be the space defined by

$$
T_{n}=\operatorname{span}(1 / \sqrt{2}, \cos (x), \sin (x), \cos (2 x), \sin (2 x), \ldots, \cos (n x), \sin (n x))
$$

Calculate the projection of $f(x)=x$ onto T_{n}.
(extra space)

Fourier series: Let $f(x)$ be a piecewise continuous function defined on $[-\pi, \pi]$. Then it is equal to its Fourier series

$$
f(x)=\frac{a_{0}}{\sqrt{2}}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+\sum_{n=1}^{\infty} b_{n} \sin (n x)
$$

where the coefficients are defined by

$$
a_{0}=\langle f(x), 1 / \sqrt{2}\rangle \quad a_{n}=\langle f(x), \cos (n x)\rangle \quad b_{n}=\langle f(x), \sin (n x)\rangle
$$

This expression may be thought of as $\operatorname{proj}_{T_{\infty}}(f(x))$, the projection of $f(x)$ onto the space of all trigonometric polynomials.
6. Let $f(x)$ be defined on $[-\pi, \pi]$ by

$$
f(x)= \begin{cases}1 & \text { if }-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Calculate the Fourier coefficients. What is $\operatorname{proj}_{T_{99}}(f(x))$?

```
(extra space)
```

Let $f(x)=x$ (problem 5). Here are the graphs of $f_{n}=\operatorname{proj}_{T_{n}} f$ for various values of n.

$n=3$

