
Math 21b Apr 11: Nonlinear Systems and the operator D

Qualitative Phase Plane Analysis: The steps for phase plane analysis of the nonlinear system dx
dt =

f(x, y), dydt = g(x, y) are:

• Draw the dx
dt = 0 nullcline, indicated by vertical dashes.

• Draw the dy
dt = 0 nullcline, indicated by horizontal dashes.

• Find the equilibrium points by computing the points of intersection of the two nullclines.

• Orient each nullcline in each region by testing points. Then orient each region cut out by the
nullclines.

• Determine the stability of each equilibrium point (a, b) by linearizing using the Jacobian matrix

A =

[
∂
∂xf(a, b)

∂
∂yf(a, b)

∂
∂xg(a, b)

∂
∂y g(a, b)

]

1. Consider the following model for a predator-prey relationship. x(t) represents the population (in
hundreds) of the predator species X at time t, and y(t) represents the population (in hundreds) of the
prey species Y at time t. 

dx

dt
= x(−4 + y)

dy

dt
= y(10− 2x− y)

(a) Perform a qualitative phase plane analysis.

Solution: This comes straight from Janet Chen's worksheets. When we do a qualitative phase
plane analysis, we are basically trying to sketch the equilibrium points as well as all horizontal
and vertical arrows in the direction �eld. We also want to get the general direction of arrows in
the direction �eld (by �general direction,� we mean: up and right vs. up and left vs. down and
right vs. down and left). We'll do this in a series of steps.

• Step 1: Figure out when dx
dt = 0.

When dx
dt = 0, the arrows in the direction �eld are vertical. We'll wait to decide whether these

arrows go up or down; for now, we'll just draw short vertical line segments at these places.

From the given equation dx
dt = x(−4 + y), we see that dx

dt = 0 when x = 0 or y = 4.
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• Step 2: Figure out when dy
dt = 0.

When dy
dt = 0, the arrows in the direction �eld are horizontal. Here, dydt = 0 when y = 0 or

10 − 2x − y = 0 (the latter equation can be rewritten as y = 10 − 2x). Along each of these
nullclines, we draw short horizontal line segments:
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• Step 3: Identify the equilibrium points, and draw dots there.

The equilibrium points are where dx
dt = 0 and dy

dt = 0. In other words, these are where the
red vertical lines and green horizontal lines cross. You can �nd these just by looking at the
sketch so far (they happen at (0, 0), (10, 0), and (3, 4)). We will draw the equilibrium points
using blue dots (replacing the red and green segments that were there):
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• Step 4: Orient each region.

Notice that the nullclines have divided the �rst quadrant of our plane into 4 regions. Within
a single region, dxdt and

dy
dt cannot change sign (for instance, if dxdt were to change from positive

to negative, it would have to be 0, but this can only happen along a dx
dt = 0 nullcline). So,

test one point in each region to decide the general direction of trajectories in that region (by
�general direction,� we mean �up and left,� �up and right,� �down and left,� or �down and
right�).

For the top right region, we can pick a point like (6, 6) (any point is �ne, as long as you don't
pick one along a nullcline). If we plug x = 6, y = 6 into the given equations, we get dx

dt = 12

and dy
dt = 6(−8). So, dxdt > 0 and dy

dt < 0, which means that arrows in the direction �eld here
go right and down. If you do this for the other 3 regions, you get the following diagram:
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• Step 5: Orient the nullclines

Now, we can orient the nullclines simply by making them �agree� with the regions.
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(b) Which equilibrium points are stable? Use this to draw trajectories.

Solution: In some cases, we can see this directly from the phase plane analysis. For example,
around (0, 0), all trajectories other than those on the x-axis tend away from (0, 0). Around
(0, 10), trajectories along the y-axis tend to (0, 10), but all other trajectories tend away. So,
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(0, 0) and (0, 10) are not asymptotically stable .

To determine whether (3, 4) is asymptotically stable, we'll linearize there. The Jacobian of our

system is J(x, y) =

[
−4 + y x
−2y 10− 2x− 2y

]
. So, J(3, 4) =

[
0 3
−8 −4

]
. This has eigenvalues

−2 ± 2i
√
5, so the trajectories of the linearized system are inward spirals. Since the eigenvalues

have negative real part, (3, 4) is asymptotically stable .

2. Perform a phase plane analysis of the system


dx

dt
=

1

3
x(7− x− 2y)

dy

dt
= 5y(−1 + x− y)

. Use this analysis to draw

some trajectories.

Solution: This solution also comes from Janet's worksheets. Here is the phase plane analysis.
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The Jacobian of this system at any point is J(x, y) =

[
1
3 (7− 2x− 2y) 1

3 (−2x)
5y 5(−1 + x− 2y)

]
.

At the equilibrium point (3, 2), the Jacobian is J(3, 2) =

[
−1 −2
10 −10

]
. Thus, near (3, 2), the trajectories

will look like the trajectories of
d~x

dt
=

[
−1 −2
10 −10

]
~x. The matrix

[
−1 −2
10 −10

]
has eigenvalues −6 and

−5, with corresponding eigenvectors ~v1 =

[
2
5

]
and ~v2 =

[
1
2

]
. So, the trajectories of

d~x

dt
=

[
−1 −2
10 −10

]
~x

look like this:
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So, here are the approximate trajectories near (3, 2):

0 1 2 3 4 5 6 7 8
x0

1

2

3

4

5

6

7

8

y

Here are some actual trajectories of the nonlinear system:
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3. In this question, we will consider the operator D de�ned by D(f) = f ′ for any smooth function f .

(a) Remember that we write C∞ to mean the (in�nite-dimensional) linear space of all smooth real-
valued functions. Then D is a linear transformation from C∞ to C∞ because it satis�es three
properties: what are they?

• D(0) = 0, where here 0 refers to the zero function.

• D(f + g) = D(f) +D(g).

• D(c · f) = c ·D(f) for any constant c ∈ R.

All three of these properties are clear.

(b) Can you describe the kernel of D - i.e. the functions f such that D(f) = 0?

Solution: The kernel consists of the constant functions. Therefore, it is one-dimensional, as it is
spanned by the constant function 1.

(c) Let λ be a real number. When is λ an eigenvalue of D? Can you write down an equation to �nd
an associated eigenfunction?

Solution: The di�erential equation df
dt = λf can be solved by separation of variables to get

f(t) = Ceλt for an arbitrary constant C. In other words, every real number λ is an eigenvalue of
D, with associated eigenfunction eλt.

(d) Let fλ(t) be the eigenfunction you found in part (c). What is (D2 + 5)fλ?

Solution: (D2+5)f = f ′′+5f , so (D2+5)eλt = (λ2+5)eλt. SoD2+5 has the same eigenfunctions
as D, but the associated eigenvalues are di�erent.

(e) Consider the di�erential equation f ′′ − 4f ′ + 3f = 0. Write this equation in the form A(f) = 0,
where A is a linear transformation formed using D.

Solution: Since f ′′ = D2(f), we can rewrite the above di�erential equation as (D2−4D+3)f = 0.
In other words, the solutions to this di�erential equation are precisely the kernel of the di�erential

operator D2 − 4D + 3.

(f) Use this form to write down the general solution to the di�erential equation f ′′ − 4f ′ + 3f = 0.

Solution: D2− 4D+3 = (D− 1)(D− 3). Since ker(D− 1) and ker(D− 3) are each one-dimensional,
ker(D − 1)(D − 3) is at most two-dimensional. In fact, since ker(D − 1) and ker(D − 3) are linearly
independent (spanned by et and e3t, respectively), and both contained in ker(D − 1)(D − 3), it fol-
lows that ker(D − 1)(D − 3) = 〈et, e3t〉. That is, the general solution to the di�erential equation is

C1e
t + C2e

3t .

4. In this question, we will analyze the linear space C∞per of smooth real-valued functions f(t) which are
2π-periodic. That is, f(t) = f(t+ 2π) for every t.
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(a) Can you think of a few familiar functions which are 2π-periodic?

Solution: sin(t), cos(t). More generally, sin(nt), cos(nt) for an integer n. (Note that we only need
to consider n ≥ 0 because cos(−nt) = cos(nt) and sin(−nt) = − sin(nt).)

(b) For the functions f you wrote down in part (a), calculate D2f - i.e., the second derivative.

Solution: D2(sin(t)) = D(cos(t)) = − sin(t). Similarly, D2(cos(t)) = − cos(t). Therefore, these
functions are eigenfunctions of D2 with eigenvalue −1. In general, cos(nt) and sin(nt) have
eigenvalues −n2. (However, they are not eigenfunctions of D!)

(c) What are the eigenvalues of D as it acts on the linear space C∞per?

Solution: Since D2 has −n2 as an eigenvalue (of multiplicity at least two) for every positive
integer n, D has eigenvalues in and −in for every positive integer n. But where are the eigen-

functions?

(d) Can you write down the associated eigenfunctions? (Note that these will be complex-valued
functions!)

Solution: We use the following trick:

D(cos(t) + i sin(t)) = (− sin(t) + i cos(t)) = i(cos(t) + i sin(t))

D(cos(t)− i sin(t)) = (− sin(t)− i cos(t)) = −i(cos(t)− i sin(t))

Since cos(t)+i sin(t) = eit and cos(t)−i sin(t) = e−it, we have complex eigenfunctions eit and e−it

of eigenvalues i and −i. More generally, we have eigenfunctions eint, e−int of eigenvalues in,−in.
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