Math 21b Apr 11: Nonlinear Systems and the operator D

Qualitative Phase Plane Analysis: The steps for phase plane analysis of the nonlinear system $\frac{d x}{d t}=$ $f(x, y), \frac{d y}{d t}=g(x, y)$ are:

- Draw the $\frac{d x}{d t}=0$ nullcline, indicated by \qquad dashes.
- Draw the $\frac{d y}{d t}=0$ nullcline, indicated by \qquad dashes.
- Find the equilibrium points by computing \qquad .
- Orient each nullcline in each region by testing points. Then orient each region cut out by the nullclines.
- Determine the stability of each equilibrium point (a, b) by linearizing using the Jacobian matrix

$$
A=\left[\begin{array}{ll}
\frac{\partial}{\partial x} f(a, b) & \frac{\partial}{\partial y} f(a, b) \\
\frac{\partial}{\partial x} g(a, b) & \frac{\partial}{\partial y} g(a, b)
\end{array}\right]
$$

1. Consider the following model for a predator-prey relationship. $x(t)$ represents the population (in hundreds) of the predator species X at time t, and $y(t)$ represents the population (in hundreds) of the prey species Y at time t.

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x(-4+y) \\
\frac{d y}{d t}=y(10-2 x-y)
\end{array}\right.
$$

(a) Perform a qualitative phase plane analysis.
(b) Which equilibrium points are stable? Use this to draw trajectories.
2. Perform a phase plane analysis of the system $\left\{\begin{array}{l}\frac{d x}{d t}=\frac{1}{3} x(7-x-2 y) \\ \frac{d y}{d t}=5 y(-1+x-y)\end{array}\right.$. Use this analysis to draw some trajectories.
3. In this question, we will consider the operator D defined by $D(f)=f^{\prime}$ for any smooth function f.
(a) Remember that we write C^{∞} to mean the (infinite-dimensional) linear space of all smooth realvalued functions. Then D is a linear transformation from C^{∞} to C^{∞} because it satisfies three properties: what are they?
(b) Can you describe the kernel of D - i.e. the functions f such that $D(f)=0$?
(c) Let λ be a real number. When is λ an eigenvalue of D ? Can you write down an equation to find an associated eigenfunction?
(d) Let $f_{\lambda}(t)$ be the eigenfunction you found in part (c). What is $\left(D^{2}+5\right) f_{\lambda}$?
(e) Consider the differential equation $f^{\prime \prime}-4 f^{\prime}+3 f=0$. Write this equation in the form $A(f)=0$, where A is a linear transformation formed using D.
(f) Use this form to write down the general solution to the differential equation $f^{\prime \prime}-4 f^{\prime}+3 f=0$.
4. In this question, we will analyze the linear space $C_{\text {per }}^{\infty}$ of smooth real-valued functions $f(t)$ which are 2π-periodic. That is, $f(t)=f(t+2 \pi)$ for every t.
(a) Can you think of a few familiar functions which are 2π-periodic?
(b) For the functions f you wrote down in part (a), calculate $D^{2} f$ - i.e., the second derivative.
(c) What are the eigenvalues of D as it acts on the linear space $C_{\mathrm{per}}^{\infty}$?
(d) Can you write down the associated eigenfunctions? (Note that these will be complex-valued functions!)

