MATH 21B, JANUARY 31: MATRICES - ROWS, RANK, AND REDUCED ROW ECHELON FORM

A matrix is said to be in reduced row echelon form if it satisfies the following properties:
(1) If a row contains nonzero entries, then the first nonzero entry is a 1 , and is called a leading 1.
(2) If a column contains a leading 1 , then the other entries in that column are 0.
(3) If a row has a leading 1 , then every row above it has a leading 1 somewhere to the left. The number of leading 1's is called the rank. Pictorially, a matrix in reduced row echelon form looks something like the following.

$$
\left[\begin{array}{llllll}
0 & 1 & 0 & * & 0 & * \\
0 & 0 & 1 & * & 0 & * \\
0 & 0 & 0 & 0 & 1 & *
\end{array}\right]
$$

where the *'s can be any numbers, and the 1 's shown are leading 1 's.
(1) In the following systems, use Gauss-Jordan elimination (row operations) to reduce the coefficient matrix to reduced row echelon form. Here, \vec{x} is a column vector whose size is equal to the number of variables of the system. How can we then use this form to find all solutions? (Bonus: Can you see a relation between the rank of the system and the structure of the solutions?)

$$
\left[\begin{array}{lll}
1 & -2 & -1 \\
2 & -4 & -2 \\
2 & -5 & -4
\end{array}\right] \vec{x}=\left[\begin{array}{l}
2 \\
4 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{ccccc}
0 & 1 & 2 & 2 & -2 \\
1 & 0 & 3 & 0 & 4 \\
-1 & 3 & 3 & 0 & -10
\end{array}\right] \vec{x}=\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
1 & -2 & -1 \\
2 & -4 & -2 \\
2 & -5 & -4
\end{array}\right] \vec{x}=\left[\begin{array}{l}
2 \\
4 \\
3
\end{array}\right]
$$

(2) Each of the following matrices is the reduced row echelon form of the augmented matrix of an unknown system. How many solutions does the system have? Explain briefly.

$$
\left[\begin{array}{ll:l}
1 & 0 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{lll:l}
1 & 0 & 1 & 2 \\
0 & 1 & 3 & 4 \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{rrrr:r}
1 & 0 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 & -2 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(3) If you perform Gauss-Jordan elimination on a inconsistent system, how do you recognize that the system is inconsistent?
(4) If A is an $n \times m$ matrix such that $A \vec{x}=\vec{b}$ is consistent for every $\vec{b} \in \mathbb{R}^{m}$, what can you say about $\operatorname{rref}(A)$?
(5) If the reduced row echelon form of a matrix A has a row of all zeroes, what does this imply about the rows of A ? If there are two rows of all zeroes?
(6) Find all values of a for which the system $\left[\begin{array}{ll}2 & a \\ 3 & 6\end{array}\right] \vec{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is consistent.

