
Math 21b Apr 6: Linear Continuous Dynamical Systems

1. (Warmup) Let k be a constant. What is the solution to the di�erential equation dx
dt = kx with a given

initial condition x(0)?

Solution: x(t) = ektx(0) . You can explicitly check that any function Cekt, where C is a constant,

satis�es the di�erential equation - i.e., its derivative is k times itself. Alternatively, the di�erential
equation can be solved directly by separation of variables.

2. (a) Which of the following is the direction �eld of the continuous linear dynamical system
d~x

dt
=[

0 −1
1 0

]
~x?
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Solution: It's (B). You can check this, for example, by computing d~x
dt for some values of ~x, such

as

[
1
0

]
,

[
−1
0

]
,

[
0
1

]
,

[
0
−1

]
.

(b) Based on the direction �eld, can you guess the solution of d~x
dt =

[
0 −1
1 0

]
~x with ~x(0) =

[
2
0

]
?

Check that your guess is really a solution.

Solution: The solution with ~x(0) =

[
2
0

]
is ~x(t) =

[
2 cos(t)
2 sin(t)

]
. We can directly con�rm that this

satis�es the di�erential equation.

3. Suppose we have a continuous dynamical system d~x
dt = A~x where A is an n × n matrix. Moreover,

suppose that A has eigenbasis B = (~v1, . . . , ~vn) with eigenvectors λ1, . . . , λn. Thus, let A = SDS−1

where D is a diagonal matrix whose diagonal entries are the eigenvalues, and S is the matrix whose
columns are the eigenvectors. In this problem, we will use this information to explicitly solve for ~x(t),
given an initial condition ~x(0).

(a) How can we express the vector ~x(t) in terms of the eigenbasis ~v1, . . . , ~vn?
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Solution: By assumption, ~v1, . . . , ~vn form a basis for Rn. Therefore, ~x(t) can be expressed as a
linear combination

~x(t) = c1(t)~v1 + . . .+ cn(t)~vn

where c1(t), . . . , cn(t) are some scalar -valued functions. Explicitly, one can compute c1(0), . . . , cn(0)
by computing S−1~x(0), because

~x(t) = S

c1(t)...
cn(t)

 =⇒ S−1~x(t) =

c1(t)...
cn(t)



(b) Rewrite the di�erential equation d~x
dt = A~x in terms of your answer to (a), and use that to �nd the

general solution of the continuous dynamical system.

Solution: Plug the new expression for ~x(t) into both sides of the di�erential equation d~x
dt = A~x.

d~x

dt
=

d

dt
(c1(t)~v1 + . . .+ cn(t)~vn) =

dc1
dt
~v1 + . . .+

dcn
dt
~vn

A~x = c1(t)(A~v1) + . . .+ cn(t)(A~vn) = c1(t)λ1~v1 + . . .+ cn(t)λn~vn

These two expressions on the far right are equal. Since the vectors ~v1, . . . , ~vn are linearly inde-
pendent, this tells us that

dck
dt

= λkck(t) k = 1, 2, . . . , n

and therefore
ck(t) = ck(0)e

λkt k = 1, 2, . . . , n

Therefore, if we write a1 = c1(0), . . . , an = cn(0), we have

~x(0) = a1~v1 + . . .+ an~vn =⇒ ~x(t) = a1e
λ1t~v1 + . . .+ ane

λnt~vn

(c) What is the solution ~x(t) of d~xdt = A~x satisfying the initial condition ~x(0) = a1~v1 + . . .+ an~vn?

Solution: Ah, I guess I answered this above.

4. Consider the continuous dynamical system d~x
dt =

[
−2 0
−6 1

]
~x. We are given that

[
−2 0
−6 1

]
has eigenvalues

−2, 1 with corresponding eigenvectors

[
1
2

]
,

[
0
1

]
.

(a) Find the solution satisfying the initial condition ~x(0) =

[
2
1

]
.

Solution: We �rst express ~x(0) =

[
2
1

]
as a linear combination of the two eigenvectors

[
1
2

]
,

[
0
1

]
by computing

S−1~x(0) =

[
1 0
2 1

]−1 [
2
1

]
=

[
1 0
−2 1

] [
2
1

]
=

[
2
−3

]
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thus ~x(0) = 2

[
1
2

]
− 3

[
0
1

]
. Thus, ~x(t) = 2e−2t

[
1
2

]
− 3et

[
0
1

]
.

(b) Sketch the full phase portrait of the continuous dynamical system.

I can't type a picture so easily, but the phase portrait will look analogous to 6(f).

(c) Is this system stable?

Solution: No, it is not. In fact, the only solutions ~x(t) which converge to zero are those with

~x(0) = a1

[
1
2

]
.

Stability: We say that a linear continuous dynamical system is asymptotically stable (or just stable)
if all trajectories go to ~0 as t→∞.

5. Let A =

[
−4 6
−3 2

]
, and consider the continuous dynamical system d~x

dt = A~x. The eigenvalues of A are

−1± 3i.

(a) Describe the trajectories of the system.

Solution: The trajectories are inward spirals converging to 0. This is because e(−1+3i)t =
e−t(cos(t) + i sin(t)) and e(−1−3i)t = e−t(cos(t)− i sin(t)): so as t → ∞, the magnitude e−t goes
to zero.

(b) Is this system stable? Generalize: if A is any n × n matrix which is diagonalizable over C, how
can we tell from the eigenvalues of A whether the system is stable?

Solution: Yes, it is stable. In general, A is stable if and only if as t → ∞, eλt → 0 for every
eigenvalue λ. This occurs if and only if |eλ| < 1, i.e. if λ has real part less than 0.

6. Each of the following is the phase portrait of a continuous dynamical system d~x
dt = A~x where A is a

real 2× 2 matrix. What can you say about the eigenvalues of A? In which cases is the system stable?

(a)

x

y Solution: The eigenvalues are both positive
(because all trajectories go outward) and dis-
tinct (because there are curved trajectories).
The system is not stable.
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(b)

x

y Solution: The eigenvalues are complex conju-
gates with real part zero (because the trajec-
tories are closed loops), i.e. they are purely

imaginary, because eλt is periodic only when
λ is purely imaginary. The system is not stable.

(c)

x

y Solution: The eigenvalues are both negative
(because all trajectories go inward) and equal
(because the trajectories are all straight lines).
The system is stable.

(d)

x

y Solution: The eigenvalues are complex conjugates with
negative real part (because the trajectories spi-
ral inwards). The system is stable.

(e)

x

y Solution: The eigenvalues are both negative
and are distinct. The system is stable.
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(f)

x

y Solution: One eigenvalue is positive, and one is negative.
The system is not stable.
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