Math 21b Apr 6: Linear Continuous Dynamical Systems

1. (Warmup) Let k be a constant. What is the solution to the differential equation $\frac{d x}{d t}=k x$ with a given initial condition $x(0)$?

Solution: $x(t)=e^{k t} x(0)$. You can explicitly check that any function $C e^{k t}$, where C is a constant, satisfies the differential equation - i.e., its derivative is k times itself. Alternatively, the differential equation can be solved directly by separation of variables.
2. (a) Which of the following is the direction field of the continuous linear dynamical system $\frac{d \vec{x}}{d t}=$ $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right] \vec{x}$?

(A)

(B)

(C)

Solution: It's (B). You can check this, for example, by computing $\frac{d \vec{x}}{d t}$ for some values of \vec{x}, such as $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1\end{array}\right]$.
(b) Based on the direction field, can you guess the solution of $\frac{d \vec{x}}{d t}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \vec{x}$ with $\vec{x}(0)=\left[\begin{array}{l}2 \\ 0\end{array}\right]$? Check that your guess is really a solution.

Solution: The solution with $\vec{x}(0)=\left[\begin{array}{l}2 \\ 0\end{array}\right]$ is $\vec{x}(t)=\left[\begin{array}{l}2 \cos (t) \\ 2 \sin (t)\end{array}\right]$. We can directly confirm that this satisfies the differential equation.
3. Suppose we have a continuous dynamical system $\frac{d \vec{x}}{d t}=A \vec{x}$ where A is an $n \times n$ matrix. Moreover, suppose that A has eigenbasis $\mathfrak{B}=\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)$ with eigenvectors $\lambda_{1}, \ldots, \lambda_{n}$. Thus, let $A=S D S^{-1}$ where D is a diagonal matrix whose diagonal entries are the eigenvalues, and S is the matrix whose columns are the eigenvectors. In this problem, we will use this information to explicitly solve for $\vec{x}(t)$, given an initial condition $\vec{x}(0)$.
(a) How can we express the vector $\vec{x}(t)$ in terms of the eigenbasis $\vec{v}_{1}, \ldots, \vec{v}_{n}$?

Solution: By assumption, $\vec{v}_{1}, \ldots, \vec{v}_{n}$ form a basis for \mathbb{R}^{n}. Therefore, $\vec{x}(t)$ can be expressed as a linear combination

$$
\vec{x}(t)=c_{1}(t) \vec{v}_{1}+\ldots+c_{n}(t) \vec{v}_{n}
$$

where $c_{1}(t), \ldots, c_{n}(t)$ are some scalar-valued functions. Explicitly, one can compute $c_{1}(0), \ldots, c_{n}(0)$ by computing $S^{-1} \vec{x}(0)$, because

$$
\vec{x}(t)=S\left[\begin{array}{c}
c_{1}(t) \\
\vdots \\
c_{n}(t)
\end{array}\right] \Longrightarrow S^{-1} \vec{x}(t)=\left[\begin{array}{c}
c_{1}(t) \\
\vdots \\
c_{n}(t)
\end{array}\right]
$$

(b) Rewrite the differential equation $\frac{d \vec{x}}{d t}=A \vec{x}$ in terms of your answer to (a), and use that to find the general solution of the continuous dynamical system.

Solution: Plug the new expression for $\vec{x}(t)$ into both sides of the differential equation $\frac{d \vec{x}}{d t}=A \vec{x}$.

$$
\begin{gathered}
\frac{d \vec{x}}{d t}=\frac{d}{d t}\left(c_{1}(t) \vec{v}_{1}+\ldots+c_{n}(t) \vec{v}_{n}\right)=\frac{d c_{1}}{d t} \vec{v}_{1}+\ldots+\frac{d c_{n}}{d t} \vec{v}_{n} \\
A \vec{x}=c_{1}(t)\left(A \vec{v}_{1}\right)+\ldots+c_{n}(t)\left(A \vec{v}_{n}\right)=c_{1}(t) \lambda_{1} \vec{v}_{1}+\ldots+c_{n}(t) \lambda_{n} \vec{v}_{n}
\end{gathered}
$$

These two expressions on the far right are equal. Since the vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent, this tells us that

$$
\frac{d c_{k}}{d t}=\lambda_{k} c_{k}(t) \quad k=1,2, \ldots, n
$$

and therefore

$$
c_{k}(t)=c_{k}(0) e^{\lambda_{k} t} \quad k=1,2, \ldots, n
$$

Therefore, if we write $a_{1}=c_{1}(0), \ldots, a_{n}=c_{n}(0)$, we have

$$
\vec{x}(0)=a_{1} \vec{v}_{1}+\ldots+a_{n} \vec{v}_{n} \Longrightarrow \vec{x}(t)=a_{1} e^{\lambda_{1} t} \vec{v}_{1}+\ldots+a_{n} e^{\lambda_{n} t} \vec{v}_{n}
$$

(c) What is the solution $\vec{x}(t)$ of $\frac{d \vec{x}}{d t}=A \vec{x}$ satisfying the initial condition $\vec{x}(0)=a_{1} \vec{v}_{1}+\ldots+a_{n} \vec{v}_{n}$?

Solution: Ah, I guess I answered this above.
4. Consider the continuous dynamical system $\frac{d \vec{x}}{d t}=\left[\begin{array}{ll}-2 & 0 \\ -6 & 1\end{array}\right] \vec{x}$. We are given that $\left[\begin{array}{ll}-2 & 0 \\ -6 & 1\end{array}\right]$ has eigenvalues $-2,1$ with corresponding eigenvectors $\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(a) Find the solution satisfying the initial condition $\vec{x}(0)=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

Solution: We first express $\vec{x}(0)=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ as a linear combination of the two eigenvectors $\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$ by computing

$$
S^{-1} \vec{x}(0)=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

thus $\vec{x}(0)=2\left[\begin{array}{l}1 \\ 2\end{array}\right]-3\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Thus, $\vec{x}(t)=2 e^{-2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]-3 e^{t}\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(b) Sketch the full phase portrait of the continuous dynamical system.

I can't type a picture so easily, but the phase portrait will look analogous to $6(\mathrm{f})$.
(c) Is this system stable?

Solution: No, it is not. In fact, the only solutions $\vec{x}(t)$ which converge to zero are those with $\vec{x}(0)=a_{1}\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

Stability: We say that a linear continuous dynamical system is asymptotically stable (or just stable) if all trajectories go to $\overrightarrow{0}$ as $t \rightarrow \infty$.
5. Let $A=\left[\begin{array}{ll}-4 & 6 \\ -3 & 2\end{array}\right]$, and consider the continuous dynamical system $\frac{d \vec{x}}{d t}=A \vec{x}$. The eigenvalues of A are $-1 \pm 3 i$.
(a) Describe the trajectories of the system.

Solution: The trajectories are inward spirals converging to 0 . This is because $e^{(-1+3 i) t}=$ $e^{-t}(\cos (t)+i \sin (t))$ and $e^{(-1-3 i) t}=e^{-t}(\cos (t)-i \sin (t))$: so as $t \rightarrow \infty$, the magnitude e^{-t} goes to zero.
(b) Is this system stable? Generalize: if A is any $n \times n$ matrix which is diagonalizable over \mathbb{C}, how can we tell from the eigenvalues of A whether the system is stable?

Solution: Yes, it is stable. In general, A is stable if and only if as $t \rightarrow \infty, e^{\lambda t} \rightarrow 0$ for every eigenvalue λ. This occurs if and only if $\left|e^{\lambda}\right|<1$, i.e. if λ has real part less than 0 .
6. Each of the following is the phase portrait of a continuous dynamical system $\frac{d \vec{x}}{d t}=A \vec{x}$ where A is a real 2×2 matrix. What can you say about the eigenvalues of A ? In which cases is the system stable?
(a)

Solution: The eigenvalues are both positive (because all trajectories go outward) and distinct (because there are curved trajectories). The system is not stable.
(b)

(c)

(d)

(e)

Solution: The eigenvalues are complex conjugates with negative real part (because the trajectories spiral inwards). The system is stable.

Solution: The eigenvalues are both negative and are distinct. The system is stable.

Solution: One eigenvalue is positive, and one is negative. The system is not stable.

