Math 21b Apr 6: Linear Continuous Dynamical Systems

1. (Warmup) Let k be a constant. What is the solution to the differential equation $\frac{d x}{d t}=k x$ with a given initial condition $x(0)$?
2. (a) Which of the following is the direction field of the continuous linear dynamical system $\frac{d \vec{x}}{d t}=$ $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right] \vec{x}$?

(A)

(B)

(C)
(b) Based on the direction field, can you guess the solution of $\frac{d \vec{x}}{d t}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \vec{x}$ with $\vec{x}(0)=\left[\begin{array}{l}2 \\ 0\end{array}\right]$? Check that your guess is really a solution.
3. Suppose we have a continuous dynamical system $\frac{d \vec{x}}{d t}=A \vec{x}$ where A is an $n \times n$ matrix. Moreover, suppose that A has eigenbasis $\mathfrak{B}=\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)$ with eigenvectors $\lambda_{1}, \ldots, \lambda_{n}$. In this problem, we will use this information to explicitly solve for $\vec{x}(t)$, given an initial condition $\vec{x}(0)$.
(a) How can we express the vector $\vec{x}(t)$ in terms of the eigenbasis $\vec{v}_{1}, \ldots, \vec{v}_{n}$?
(b) Rewrite the differential equation $\frac{d \vec{x}}{d t}=A \vec{x}$ in terms of your answer to (a), and use that to find the general solution of the continuous dynamical system.
(c) What is the solution $\vec{x}(t)$ of $\frac{d \vec{x}}{d t}=A \vec{x}$ satisfying the initial condition $\vec{x}(0)=c_{1} \vec{v}_{1}+\ldots+c_{n} \vec{v}_{n}$?
4. Consider the continuous dynamical system $\frac{d \vec{x}}{d t}=\left[\begin{array}{ll}-2 & 0 \\ -6 & 1\end{array}\right] \vec{x}$. We are given that $\left[\begin{array}{ll}-2 & 0 \\ -6 & 1\end{array}\right]$ has eigenvalues $-2,1$ with corresponding eigenvectors $\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(a) Find the solution satisfying the initial condition $\vec{x}(0)=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
(b) Sketch the full phase portrait of the continuous dynamical system.
(c) Is this system stable?

Stability: We say that a linear continuous dynamical system is asymptotically stable (or just stable) if all trajectories go to $\overrightarrow{0}$ as $t \rightarrow \infty$.
5. Let $A=\left[\begin{array}{ll}-4 & 6 \\ -3 & 2\end{array}\right]$, and consider the continuous dynamical system $\frac{d \vec{x}}{d t}=A \vec{x}$. The eigenvalues of A are $-1 \pm 3 i$.
(a) Describe the trajectories of the system.
(b) Is this system stable? Generalize: if A is any $n \times n$ matrix which is diagonalizable over \mathbb{C}, how can we tell from the eigenvalues of A whether the system is stable?
6. Each of the following is the phase portrait of a continuous dynamical system $\frac{d \vec{x}}{d t}=A \vec{x}$ where A is a real 2×2 matrix. What can you say about the eigenvalues of A ? In which cases is the system stable?
(a)

(c)

(b)

(d)

(e)

(f)

