
Math 21b, March 30: Stability (cont.), Symmetric Matrices and the Spectral
Theorem

1. For each of the following matrices A, determine whether it is stable (i.e., asymptotically stable).

(a) A =

[
1 1
0 1

]

Not stable: At =

[
1 t
0 1

]
, thus the initial con-

dition ~x(0) =

[
0
1

]
gives ~x(t) =

[
t
1

]
which goes

o� to in�nity.

(b) A =

[
0.99 1000
0 0.9

]

Stable: Has distinct eigenvalues 0.99 and 0.9,
and therefore it's diagonalizable with eigenval-
ues of magnitude less than 1 =⇒ stable.

2. Which rotation dilation matrices have trajectories which are circles?

Solution: In order for the trajectory to be a closed loop, we must have eigenvalues satisfying |λ| = 1.

These are the rotation matrices (i.e. no dilation component)

[
cos θ − sin θ
sin θ cos θ

]
. (Note this matrix,

which represents rotation counterclockwise by θ around the origin, has eigenvalues e±iθ.)

The dot product for complex vectors is de�ned by the formula

v · w = vTw

(v is the complex conjugate of the vector v.) If A is any matrix, then v · (Aw) = (A
T
v) · w. This is

by algebraic manipulation:

v · (Aw) = vT (Aw) = (vTA)w = A
T
v
T

w = (A
T
v) · w

A is called symmetric if AT = A.

A is called anti-symmetric if AT = −A.

3. Suppose that A is a symmetric matrix with real entries. In this problem, we will show that its
eigenvalues are real and it has an eigenbasis of orthonormal vectors.

(a) Show that (A~x) · ~y = ~x · (A~y) for any vectors ~x, ~y.

Solution:
~x · (A~y) = (A

T
~x) · ~y = (AT~x) · ~y = (A~x) · ~y

The �rst step is by the property in the �rst box above. The second step is because A has all real
entries, and the third step is because A is symmetric.
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(b) Suppose that ~v is a unit vector with eigenvalue λ. Argue that λ must be real by comparing (A~v) ·~v
and ~v · (A~v).

Solution: By part (a), (A~v) · ~v = ~v · (A~v). Separately calculating each,

~v · (A~v) = ~v · (λ~v) = λ(~v · ~v)

(A~v) · ~v = (λ~v) · ~v = λ(~v · ~v)
Thus, λ = λ and so λ is real.

(c) Suppose that ~v1 and ~v2 have di�erent eigenvalues λ1 and λ2, respectively. Argue that ~v1 and ~v2
are orthogonal by comparing (A~v1) · ~v2 and ~v1 · (A~v2).

Solution:
λ1(~v1 · ~v2) = (A~v1) · ~v2 = ~v1 · (A~v2) = λ2(~v1 · ~v2)

The �rst step is because ~v1 is an eigenvector, the middle step is by part (a), and the last step is
because ~v2 is an eigenvector. Therefore, (λ1 − λ2)(~v1 · ~v2) = 0. Since λ1 − λ2 6= 0, it follows that
~v1 · ~v2 = 0, i.e. ~v1 ⊥ ~v2.

(d) Can you argue that if A is symmetric, then it must be diagonalizable? (This is not so easy!)

Solution: Two proofs of this fact will be given at the end of this worksheet.

4. Suppose that A has real eigenvalues and has an orthonormal eigenbasis. That is, A = SDS−1

where D is a real diagonal matrix, and S is orthogonal. What is the relationship between A and AT ?

Solution: They are equal, because ST = S−1 and DT = D.

AT = (SDS−1)T = (S−1)TDTST = SDS−1 = A

The last two problems have proven the Spectral Theorem. This theorem states that a real matrix
is symmetric if and only if it is diagonalizable with an orthonormal eigenbasis.

5. Let A =

[
−3 4
4 3

]
.

(a) Is A diagonalizable over R? If so, �nd a diagonal matrix that A is similar to.

Solution: A is symmetric, so by the Spectral Theorem, it must be diagonalizable over R. Or, we
can prove it by explicitly computing the eigenvalues: they are 5 and −5, and because there are

no multiple roots, A must be diagonalizable. Therefore, A is similar to

[
5 0
0 −5

]
and also similar

to

[
−5 0
0 5

]
.
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(b) Describe the linear transformation T (~x) = A~x geometrically.

Solution: It's a re�ection dilation, because it has an eigenvector of eigenvalue 5, one of
eigenvalue −5, and these are orthogonal to each other. The eigenspace of eigenvalue 5 is the line

of re�ection (which turns out to be the span of

[
1
2

]
).

(c) LetM =

[
997 4
4 1003

]
. What is the relationship between the eigenvalues of A and the eigenvalues

of M? What about the eigenvectors?

Solution: M = A + 1000I. Therefore, M and A have the same eigenvectors, and M has
eigenvalues 1005 and 995.

6. Let V be the plane x+2y+3z = 0 in R3 and let A be the matrix of re�ection over V . Is A symmetric?
Explain carefully.

Solution: Yes. Let ~v1, ~v2 be an orthonormal basis for the plane V , and let ~v3 be a unit vector
orthogonal to V . Then A~v1 = ~v1, A~v2 = ~v2, and A~v3 = −~v3. That is, (~v1, ~v2, ~v3) form an orthonormal
eigenbasis for A with eigenvalues 1, 1,−1. Therefore, by the spectral theorem, A is symmetric.

7. The matrix A =

101 1 2
1 101 2
2 2 104

 is symmetric. Find its eigenvalues and an orthogonal eigenbasis.

(no need to normalize the eigenvectors for this question)

Solution: Let's instead work with the matrix M =

1 1 2
1 1 2
2 2 4

, as M has the same eigenvectors as A,

and its eigenvalues are just 100 less. Since rank(M) = 2, M has 0 as an eigenvalue with multiplicity
2. To �nd eigenvectors, notice that1 1 2

1 1 2
2 2 4

xy
z

 =

 x+ y + 2z
x+ y + 2z

2x+ 2y + 4z


and the only way that this can be a nonzero multiple of

xy
z

 is if

xy
z

 is a multiple of

11
2

. Plugging
this in, we �nd that

11
2

 is an eigenvector with eigenvalue 6 .

The eigenspace of eigenvalue 0 must be the orthogonal complement of the span of

11
2

 - i.e., it is
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the kernel of
[
1 1 2

]
. We can calculate a basis is

−11
0

 ,
−20

1

 and then using Gram-Schmidt to

orthogonalize, we get the orthogonal eigenvectors

−11
0

 ,
−1−1

1

 with eigenvalues 0 .

8. True or false: If A and B are similar (i.e. A = SBS−1 for some S), then they have the same eigenvalues.

True: They have the same characteristic polynomial:

det(A− λI) = det(SBS−1 − λI) = det(SBS−1 − λ(SIS−1)) = det(S(B − λI)S−1)

= det(S) det(B − λI) det(S−1) = det(B − λI) det(S) det(S−1) = det(B − λI)

9. True or false: If A and B are matrices with the same eigenvalues and multiplicities, then they are
similar.

False: Here is a counterexample.

[
1 0
0 1

]
,

[
1 1
0 1

]
.

10. True or false: If A and B are diagonalizable matrices with the same eigenvalues and multiplicities,
then they are similar.

True: If A and B have the same eigenvalues and multiplicities, then A = SDS−1 and B = RDR−1

where D is the diagonal matrix with the eigenvalues along the diagonal. The second equation can be
converted into R−1BR = D, and then plugging this into the equation for A,

A = SDS−1 = S(R−1BR)S−1 = (SR−1)B(RS−1) = (SR−1)B(SR−1)−1

Thus A ∼ B.

Now, as promised in 3(d), I will prove that any real symmetric matrix A is diagonalizable, which is the
missing piece of the proof of the Spectral Theorem. I will provide two proofs.

Proof 1 (Pure algebra): First, I will prove that A has some nonzero real eigenvector ~x1. We have
shown that the characteristic polynomial has all of its roots real (this follows from 3(b)). Let λ1 be one
of its roots. This means that det(A − λ1In) = 0, and so ker(A − λ1In) contains some nonzero vector
~x1. By de�nition, ~x1 is a nonzero real eigenvectors (with eigenvalue λ1), so this proves my �rst claim.
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Next, let W1 ⊂ Rn be the (n − 1)-dimensional space orthogonal to ~x1. I claim that A preserves W1:
i.e., it sends any vector in W1 to another vector in W1. This is true because if ~w ∈W1, then ~w ·~x1 = 0,
and thus

(A~w) · ~x1 = ~w · (A~x1) = λ1(~w · ~x1) = 0

and therefore A~w is in W1. This proves my second claim.

Now, the same argument can be used to show that W1 contains an eigenvector ~x2 of eigenvalue λ2,
and then we can let W2 be the orthogonal complement of ~x2 in W1, and A preserves W2. Then we
can show W2 contains an eigenvector ~x3, etc. In this way, we can produce an orthonormal eigenbasis
~x1, . . . , ~xn.

Proof 2 (Continuity): Pick some symmetric matrix M such that the characteristic polynomial of
A+hM has all roots distinct for all h ∈ (0, ε), for some small ε > 0.1 Then for each h ∈ (0, ε), A+hM
is diagonalizable (because the geometric multiplicity and algebraic multiplicity of each eigenvalue has
to be 1). By 3(c), the (one-dimensional) eigenspaces of A+hM are orthogonal to each other, and thus,
A+ hM is orthogonally diagonalizable.

For each h ∈ (0, ε), let λ1(h), . . . , λn(h) be the eigenvalues ofA+hM , chosen so that λ1(h), . . . , λn(h) are
continuous functions in h. Let ~x1(h), . . . , ~xn(h) be corresponding unit eigenvectors, so that ~x1(h), . . . , ~xn(h)
are continuous vector-valued functions in h. That is, for each h ∈ (0, ε),

(A+ hM)~xi(h) = λi(h)~xi(h) (1 ≤ i ≤ n)

Note that because A+ hM is symmetric, the vectors ~x1(h), . . . , ~xn(h) are pairwise orthogonal for any
�xed h.

Now let ~xi = lim
h→0+

~xi(h) and let λi = lim
h→0+

λi(h). Then

A~xi = lim
h→0+

(A+ hM)~xi(h) = lim
h→0+

λi(h)~xi(h) = λi~xi

and so ~x1, . . . , ~xn are eigenvectors of A with eigenvalues λ1, . . . , λn. Moreover, they are orthonormal,
because

~xi · ~xj = lim
h→0+

~xi(h) · ~xj(h) = lim
h→0+

0 = 0 i 6= j

~xi · ~xi = lim
h→0+

~xi(h) · ~xi(h) = lim
h→0+

1 = 1

Thus, we have produced an orthonormal eigenbasis of A. (The reason this argument fails when A is
not symmetric, is because the eigenvectors ~x1(h), . . . , ~xn(h) can collapse onto each other, i.e. their
pairwise dot products can converge to 1.)

1Roughly, the reason why such a matrix M exists is because a `generic' degree n polynomial, i.e. where all of the coe�cients

are chosen at random, will have distinct roots. Therefore, a generic n× n matrix will have distinct eigenvalues.
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