Math 21b, March 30: Stability (cont.), Symmetric Matrices and the Spectral
Theorem

1. For each of the following matrices A, determine whether it is stable (i.e., asymptotically stable).

1 1 0.99 1000
(a)A{o 1} (b)A[o 0.9]
. 1 ¢ o Stable: Has distinct eigenvalues 0.99 and 0.9,
Not stable: A" = 0o 1|’ thus the initial con- and therefore it’s diagonalizable with eigenval-

0 t ues of magnitude less than 1 = stable.
dition #(0) = [J gives Z(t) = [J which goes

off to infinity.

2. Which rotation dilation matrices have trajectories which are circles?

Solution: In order for the trajectory to be a closed loop, we must have eigenvalues satisfying |A| = 1.
cosf —siné

sind  cosd } (Note this matrix,

These are the rotation matrices (i.e. no dilation component) [

which represents rotation counterclockwise by 6 around the origin, has eigenvalues e*%.)

The dot product for complex vectors is defined by the formula

v~w=fTw

(v is the complex conjugate of the vector v.) If A is any matrix, then v - (Aw) = (ZTU) -w. This is
by algebraic manipulation:

v (Aw) =77 (Aw) = (L A)w = ZTva = (ZTU) W

A is called symmetric if AT = A.

A is called anti-symmetric if A7 = —A.

3. Suppose that A is a symmetric matrix with real entries. In this problem, we will show that its
eigenvalues are real and it has an eigenbasis of orthonormal vectors.

(a) Show that (AZ) -y = & - (Ay) for any vectors Z, 7.

Solution: .

Z-(AY) = (A 2)-§=(ATZ)-§=(AT) -7
The first step is by the property in the first box above. The second step is because A has all real
entries, and the third step is because A is symmetric.



(b) Suppose that ¢'is a unit vector with eigenvalue A. Argue that A must be real by comparing (A7) -
and v - (A7).

Solution: By part (a), (A7) - U = U - (A¥). Separately calculating each,
= 1—};)

(AD) - T = (M) -7 = \N@ - 7)
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Thus, A = X and so \ is real.

(¢) Suppose that @7 and 05 have different eigenvalues \; and Ay, respectively. Argue that ¥, and v
are orthogonal by comparing (Av;) - U2 and ¢ - (A¥s).

Solution:

A (V) - Vo) = (ATY) - Ua = Uy - (ATs) = Ao (U1 - )
The first step is because ¥ is an eigenvector, the middle step is by part (a), and the last step is
because U5 is an eigenvector. Therefore, (A1 — A2)(¥ - ¥3) = 0. Since A\ — Ay # 0, it follows that
’171 . 172 = 0, i.e. 171 1 172.

(d) Can you argue that if A is symmetric, then it must be diagonalizable? (This is not so easy!)
Solution: Two proofs of this fact will be given at the end of this worksheet.

4. Suppose that A has real eigenvalues and has an orthonormal eigenbasis. That is, A = SDS~!
where D is a real diagonal matrix, and S is orthogonal. What is the relationship between A and A”?

Solution: They are equal, because ST = S~! and DT = D.
AT = (SDS™HT = (s HT'DTST =SDS~ ' = A

The last two problems have proven the Spectral Theorem. This theorem states that a real matrix
is symmetric if and only if it is diagonalizable with an orthonormal eigenbasis.

5. Let A= {_3 4}

4 3

(a) Is A diagonalizable over R? If so, find a diagonal matrix that A is similar to.

Solution: A is symmetric, so by the Spectral Theorem, it must be diagonalizable over R. Or, we
can prove it by explicitly computing the eigenvalues: they are 5 and —5, and because there are

no multiple roots, A must be diagonalizable. Therefore, A is similar to [5 0 } and also similar

0 -5
-5 0
to [0 5].



(b) Describe the linear transformation T'(Z) = AZ geometrically.

Solution: It’s a reflection dilation, because it has an eigenvector of eigenvalue 5, one of
eigenvalue —5, and these are orthogonal to each other. The eigenspace of eigenvalue 5 is the line

of reflection (which turns out to be the span of [ﬂ ).

(c) Let M = 927 10403] . What is the relationship between the eigenvalues of A and the eigenvalues

of M? What about the eigenvectors?

Solution: M = A 4 1000/. Therefore, M and A have the same eigenvectors, and M has
eigenvalues 1005 and 995.

6. Let V be the plane 2 +2y+3z = 0 in R? and let A be the matrix of reflection over V. Is A symmetric?
Explain carefully.

Solution: Yes. Let ¥;,75 be an orthonormal basis for the plane V, and let ¢35 be a unit vector
orthogonal to V. Then Av¥; = ¥, Aty = U, and Av3 = —v3. That is, (U1, U2, U3) form an orthonormal
eigenbasis for A with eigenvalues 1,1, —1. Therefore, by the spectral theorem, A is symmetric.

101 1 2
7. The matrix A= | 1 101 2 | is symmetric. Find its eigenvalues and an orthogonal eigenbasis.
2 2 104

(no need to normalize the eigenvectors for this question)

, as M has the same eigenvectors as A,

N = =
=N N

1
Solution: Let’s instead work with the matrix M = |1
2

and its eigenvalues are just 100 less. Since rank(M)
2. To find eigenvectors, notice that

2, M has 0 as an eigenvalue with multiplicity

1 1 2| |z r+y+ 2z
1 1 2|yl =] z+y+2z
2 2 4| |z 2z + 2y + 4z
T T 1
and the only way that this can be a nonzero multiple of |y | isif |y | is a multiple of |[1|. Plugging
z z 2
1
this in, we find that | [1| |is an eigenvector with eigenvalue @
2
1
The eigenspace of eigenvalue 0 must be the orthogonal complement of the span of [1| - i.e.; it is
2



10.

-1 -2
the kernel of [1 1 2}. We can calculate a basisis | 1 |, | 0 | and then using Gram-Schmidt to
1

1] [-1
orthogonalize, we get the orthogonal eigenvectors 1 |,|—1]| | with eigenvalues @

True or false: If A and B are similar (i.e. A = SBS~! for some S), then they have the same eigenvalues.

True: They have the same characteristic polynomial:
det(A — \I) = det(SBS™! — \I) = det(SBS™ — \(SIS™')) = det(S(B — A\I)S™ 1)

= det(S) det(B — M) det(S™") = det(B — A ) det(S) det(S™*) = det(B — \I)

True or false: If A and B are matrices with the same eigenvalues and multiplicities, then they are
similar.

. 1 0 [1 1
False: Here is a counterexample. [0 J , [0 J.

True or false: If A and B are diagonalizable matrices with the same eigenvalues and multiplicities,
then they are similar.

True: If A and B have the same eigenvalues and multiplicities, then A = SDS~! and B = RDR™!
where D is the diagonal matrix with the eigenvalues along the diagonal. The second equation can be
converted into R~!BR = D, and then plugging this into the equation for A,

A=8DS™'=S(R'BR)S™ = (SR"")B(RS™') = (SR ")B(SR™")!

Thus A ~ B.

Now, as promised in 3(d), I will prove that any real symmetric matriz A is diagonalizable, which is the
missing piece of the proof of the Spectral Theorem. I will provide two proofs.

Proof 1 (Pure algebra): First, I will prove that A has some nonzero real eigenvector 1. We have
shown that the characteristic polynomial has all of its roots real (this follows from 3(b)). Let A\; be one
of its roots. This means that det(A — A1I,,) = 0, and so ker(A — A1) contains some nonzero vector
Z1. By definition, #; is a nonzero real eigenvectors (with eigenvalue A1), so this proves my first claim.



Next, let W7 C R™ be the (n — 1)-dimensional space orthogonal to 1. I claim that A preserves Wi:
i.e., it sends any vector in Wi to another vector in W;. This is true because if w € W7, then w- %, = 0,
and thus

(AW) - 2 = @ - (AT1) = M (W - 71) =0

and therefore Aw is in Wj. This proves my second claim.

Now, the same argument can be used to show that W; contains an eigenvector #s of eigenvalue Ag,
and then we can let W5 be the orthogonal complement of Zs in Wi, and A preserves W5. Then we
can show W5 contains an eigenvector T3, etc. In this way, we can produce an orthonormal eigenbasis
T1,. .., Tn.

Proof 2 (Continuity): Pick some symmetric matrix M such that the characteristic polynomial of
A+ hM has all roots distinct for all h € (0, €), for some small € > 0.! Then for each h € (0,¢), A+hM
is diagonalizable (because the geometric multiplicity and algebraic multiplicity of each eigenvalue has
to be 1). By 3(c), the (one-dimensional) eigenspaces of A+ hM are orthogonal to each other, and thus,
A + hM is orthogonally diagonalizable.

For each h € (0,¢€), let A1 (h),..., A, (h) be the eigenvalues of A+hM, chosen so that A;(h),. .., )\n(h) are
continuous functions in h. Let Z1(h), ..., %, (h) be corresponding unit eigenvectors, so that Zy (h), ..., Z,(h)
are continuous vector-valued functions in h. That is, for each h € (0, ¢€),

(A+ hM)Z;(h) = \s(h)Z:(h) (1<i<n)

Note that because A + hM is symmetric, the vectors #(h),...,Z,(h) are pairwise orthogonal for any
fixed h.

Now let Z; = lim Z;(h) and let A; = lim A;(h). Then
h—0+t

h—0t

h—0+ h—0+
and so Zy, ..., T, are eigenvectors of A with eigenvalues Ay, ..., \,. Moreover, they are orthonormal,
because
Z;-@; = lim Z;(h)-Z;(h)= lim 0=20 1# ]
ity = A i(h) - Z;(h) Py #J
h—0t h—0*t

Thus, we have produced an orthonormal eigenbasis of A. (The reason this argument fails when A is
not symmetric, is because the eigenvectors Z1(h),...,Z,(h) can collapse onto each other, i.e. their
pairwise dot products can converge to 1.)

IRoughly, the reason why such a matrix M exists is because a ‘generic’ degree n polynomial, i.e. where all of the coefficients
are chosen at random, will have distinct roots. Therefore, a generic n X n matrix will have distinct eigenvalues.



