Math 21b, March 30: Stability (cont.), Symmetric Matrices and the Spectral Theorem

1. For each of the following matrices A, determine whether it is stable (i.e., asymptotically stable).
(a) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{cc}0.99 & 1000 \\ 0 & 0.9\end{array}\right]$

Not stable: $A^{t}=\left[\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right]$, thus the initial condition $\vec{x}(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ gives $\vec{x}(t)=\left[\begin{array}{l}t \\ 1\end{array}\right]$ which goes off to infinity.

Stable: Has distinct eigenvalues 0.99 and 0.9, and therefore it's diagonalizable with eigenvalues of magnitude less than $1 \Longrightarrow$ stable.
2. Which rotation dilation matrices have trajectories which are circles?

Solution: In order for the trajectory to be a closed loop, we must have eigenvalues satisfying $|\lambda|=1$. These are the rotation matrices (i.e. no dilation component) $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$. (Note this matrix, which represents rotation counterclockwise by θ around the origin, has eigenvalues $e^{ \pm i \theta}$.)

The dot product for complex vectors is defined by the formula

$$
v \cdot w=\bar{v}^{T} w
$$

(\bar{v} is the complex conjugate of the vector v.) If A is any matrix, then $v \cdot(A w)=\left(\bar{A}^{T} v\right) \cdot w$. This is by algebraic manipulation:

$$
v \cdot(A w)=\bar{v}^{T}(A w)=\left(\bar{v}^{T} A\right) w={\overline{\bar{A}^{T}}{ }^{-}}^{T} w=\left(\bar{A}^{T} v\right) \cdot w
$$

$$
\begin{gathered}
A \text { is called symmetric if } A^{T}=A . \\
A \text { is called anti-symmetric if } A^{T}=-A .
\end{gathered}
$$

3. Suppose that A is a symmetric matrix with real entries. In this problem, we will show that its eigenvalues are real and it has an eigenbasis of orthonormal vectors.
(a) Show that $(A \vec{x}) \cdot \vec{y}=\vec{x} \cdot(A \vec{y})$ for any vectors \vec{x}, \vec{y}.

Solution:

$$
\vec{x} \cdot(A \vec{y})=\left(\bar{A}^{T} \vec{x}\right) \cdot \vec{y}=\left(A^{T} \vec{x}\right) \cdot \vec{y}=(A \vec{x}) \cdot \vec{y}
$$

The first step is by the property in the first box above. The second step is because A has all real entries, and the third step is because A is symmetric.
(b) Suppose that \vec{v} is a unit vector with eigenvalue λ. Argue that λ must be real by comparing $(A \vec{v}) \cdot \vec{v}$ and $\vec{v} \cdot(A \vec{v})$.

Solution: By part (a), (A $\vec{v}) \cdot \vec{v}=\vec{v} \cdot(A \vec{v})$. Separately calculating each,

$$
\begin{aligned}
& \vec{v} \cdot(A \vec{v})=\vec{v} \cdot(\lambda \vec{v})=\lambda(\vec{v} \cdot \vec{v}) \\
& (A \vec{v}) \cdot \vec{v}=(\lambda \vec{v}) \cdot \vec{v}=\bar{\lambda}(\vec{v} \cdot \vec{v})
\end{aligned}
$$

Thus, $\lambda=\bar{\lambda}$ and so λ is real.
(c) Suppose that \vec{v}_{1} and \vec{v}_{2} have different eigenvalues λ_{1} and λ_{2}, respectively. Argue that \vec{v}_{1} and \vec{v}_{2} are orthogonal by comparing $\left(A \vec{v}_{1}\right) \cdot \vec{v}_{2}$ and $\vec{v}_{1} \cdot\left(A \vec{v}_{2}\right)$.

Solution:

$$
\lambda_{1}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)=\left(A \vec{v}_{1}\right) \cdot \vec{v}_{2}=\vec{v}_{1} \cdot\left(A \vec{v}_{2}\right)=\lambda_{2}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)
$$

The first step is because \vec{v}_{1} is an eigenvector, the middle step is by part (a), and the last step is because \vec{v}_{2} is an eigenvector. Therefore, $\left(\lambda_{1}-\lambda_{2}\right)\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)=0$. Since $\lambda_{1}-\lambda_{2} \neq 0$, it follows that $\vec{v}_{1} \cdot \vec{v}_{2}=0$, i.e. $\vec{v}_{1} \perp \vec{v}_{2}$.
(d) Can you argue that if A is symmetric, then it must be diagonalizable? (This is not so easy!)

Solution: Two proofs of this fact will be given at the end of this worksheet.
4. Suppose that A has real eigenvalues and has an orthonormal eigenbasis. That is, $A=S D S^{-1}$ where D is a real diagonal matrix, and S is orthogonal. What is the relationship between A and A^{T} ?

Solution: They are equal, because $S^{T}=S^{-1}$ and $D^{T}=D$.

$$
A^{T}=\left(S D S^{-1}\right)^{T}=\left(S^{-1}\right)^{T} D^{T} S^{T}=S D S^{-1}=A
$$

The last two problems have proven the Spectral Theorem. This theorem states that a real matrix is symmetric if and only if it is diagonalizable with an orthonormal eigenbasis.
5. Let $A=\left[\begin{array}{cc}-3 & 4 \\ 4 & 3\end{array}\right]$.
(a) Is A diagonalizable over \mathbb{R} ? If so, find a diagonal matrix that A is similar to.

Solution: A is symmetric, so by the Spectral Theorem, it must be diagonalizable over \mathbb{R}. Or, we can prove it by explicitly computing the eigenvalues: they are 5 and -5 , and because there are no multiple roots, A must be diagonalizable. Therefore, A is similar to $\left[\begin{array}{cc}5 & 0 \\ 0 & -5\end{array}\right]$ and also similar to $\left[\begin{array}{cc}-5 & 0 \\ 0 & 5\end{array}\right]$.
(b) Describe the linear transformation $T(\vec{x})=A \vec{x}$ geometrically.

Solution: It's a reflection dilation, because it has an eigenvector of eigenvalue 5, one of eigenvalue -5 , and these are orthogonal to each other. The eigenspace of eigenvalue 5 is the line of reflection (which turns out to be the span of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$).
(c) Let $M=\left[\begin{array}{cc}997 & 4 \\ 4 & 1003\end{array}\right]$. What is the relationship between the eigenvalues of A and the eigenvalues of M ? What about the eigenvectors?

Solution: $M=A+1000 I$. Therefore, M and A have the same eigenvectors, and M has eigenvalues 1005 and 995.
6. Let V be the plane $x+2 y+3 z=0$ in \mathbb{R}^{3} and let A be the matrix of reflection over V. Is A symmetric? Explain carefully.

Solution: Yes. Let \vec{v}_{1}, \vec{v}_{2} be an orthonormal basis for the plane V, and let \vec{v}_{3} be a unit vector orthogonal to V. Then $A \vec{v}_{1}=\vec{v}_{1}, A \vec{v}_{2}=\vec{v}_{2}$, and $A \vec{v}_{3}=-\vec{v}_{3}$. That is, $\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right)$ form an orthonormal eigenbasis for A with eigenvalues $1,1,-1$. Therefore, by the spectral theorem, A is symmetric.
7. The matrix $A=\left[\begin{array}{ccc}101 & 1 & 2 \\ 1 & 101 & 2 \\ 2 & 2 & 104\end{array}\right]$ is symmetric. Find its eigenvalues and an orthogonal eigenbasis. (no need to normalize the eigenvectors for this question)

Solution: Let's instead work with the matrix $M=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 4\end{array}\right]$, as M has the same eigenvectors as A, and its eigenvalues are just 100 less. Since $\operatorname{rank}(M)=2, M$ has 0 as an eigenvalue with multiplicity 2. To find eigenvectors, notice that

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x+y+2 z \\
x+y+2 z \\
2 x+2 y+4 z
\end{array}\right]
$$

and the only way that this can be a nonzero multiple of $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is if $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is a multiple of $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$. Plugging this in, we find that $\left.\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ is an eigenvector with eigenvalue 6.
The eigenspace of eigenvalue 0 must be the orthogonal complement of the span of $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ - i.e., it is
the kernel of $\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]$. We can calculate a basis is $\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]$ and then using Gram-Schmidt to orthogonalize, we get the orthogonal eigenvectors $\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$ with eigenvalues 0 .
8. True or false: If A and B are similar (i.e. $A=S B S^{-1}$ for some S), then they have the same eigenvalues.

True: They have the same characteristic polynomial:

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(S B S^{-1}-\lambda I\right)=\operatorname{det}\left(S B S^{-1}-\lambda\left(S I S^{-1}\right)\right)=\operatorname{det}\left(S(B-\lambda I) S^{-1}\right) \\
\quad=\operatorname{det}(S) \operatorname{det}(B-\lambda I) \operatorname{det}\left(S^{-1}\right)=\operatorname{det}(B-\lambda I) \operatorname{det}(S) \operatorname{det}\left(S^{-1}\right)=\operatorname{det}(B-\lambda I)
\end{gathered}
$$

9. True or false: If A and B are matrices with the same eigenvalues and multiplicities, then they are similar.

False: Here is a counterexample. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
10. True or false: If A and B are diagonalizable matrices with the same eigenvalues and multiplicities, then they are similar.

True: If A and B have the same eigenvalues and multiplicities, then $A=S D S^{-1}$ and $B=R D R^{-1}$ where D is the diagonal matrix with the eigenvalues along the diagonal. The second equation can be converted into $R^{-1} B R=D$, and then plugging this into the equation for A,

$$
A=S D S^{-1}=S\left(R^{-1} B R\right) S^{-1}=\left(S R^{-1}\right) B\left(R S^{-1}\right)=\left(S R^{-1}\right) B\left(S R^{-1}\right)^{-1}
$$

Thus $A \sim B$.

Now, as promised in 3(d), I will prove that any real symmetric matrix A is diagonalizable, which is the missing piece of the proof of the Spectral Theorem. I will provide two proofs.

Proof 1 (Pure algebra): First, I will prove that A has some nonzero real eigenvector \vec{x}_{1}. We have shown that the characteristic polynomial has all of its roots real (this follows from $3(\mathrm{~b})$). Let λ_{1} be one of its roots. This means that $\operatorname{det}\left(A-\lambda_{1} I_{n}\right)=0$, and so $\operatorname{ker}\left(A-\lambda_{1} I_{n}\right)$ contains some nonzero vector \vec{x}_{1}. By definition, \vec{x}_{1} is a nonzero real eigenvectors (with eigenvalue λ_{1}), so this proves my first claim.

Next, let $W_{1} \subset \mathbb{R}^{n}$ be the $(n-1)$-dimensional space orthogonal to \vec{x}_{1}. I claim that A preserves W_{1} : i.e., it sends any vector in W_{1} to another vector in W_{1}. This is true because if $\vec{w} \in W_{1}$, then $\vec{w} \cdot \vec{x}_{1}=0$, and thus

$$
(A \vec{w}) \cdot \vec{x}_{1}=\vec{w} \cdot\left(A \vec{x}_{1}\right)=\lambda_{1}\left(\vec{w} \cdot \vec{x}_{1}\right)=0
$$

and therefore $A \vec{w}$ is in W_{1}. This proves my second claim.
Now, the same argument can be used to show that W_{1} contains an eigenvector \vec{x}_{2} of eigenvalue λ_{2}, and then we can let W_{2} be the orthogonal complement of \vec{x}_{2} in W_{1}, and A preserves W_{2}. Then we can show W_{2} contains an eigenvector \vec{x}_{3}, etc. In this way, we can produce an orthonormal eigenbasis $\vec{x}_{1}, \ldots, \vec{x}_{n}$.

Proof 2 (Continuity): Pick some symmetric matrix M such that the characteristic polynomial of $A+h M$ has all roots distinct for all $h \in(0, \epsilon)$, for some small $\epsilon>0 .{ }^{1}$ Then for each $h \in(0, \epsilon), A+h M$ is diagonalizable (because the geometric multiplicity and algebraic multiplicity of each eigenvalue has to be 1). By 3(c), the (one-dimensional) eigenspaces of $A+h M$ are orthogonal to each other, and thus, $A+h M$ is orthogonally diagonalizable.

For each $h \in(0, \epsilon)$, let $\lambda_{1}(h), \ldots, \lambda_{n}(h)$ be the eigenvalues of $A+h M$, chosen so that $\lambda_{1}(h), \ldots, \lambda_{n}(h)$ are continuous functions in h. Let $\vec{x}_{1}(h), \ldots, \vec{x}_{n}(h)$ be corresponding unit eigenvectors, so that $\vec{x}_{1}(h), \ldots, \vec{x}_{n}(h)$ are continuous vector-valued functions in h. That is, for each $h \in(0, \epsilon)$,

$$
(A+h M) \vec{x}_{i}(h)=\lambda_{i}(h) \vec{x}_{i}(h) \quad(1 \leq i \leq n)
$$

Note that because $A+h M$ is symmetric, the vectors $\vec{x}_{1}(h), \ldots, \vec{x}_{n}(h)$ are pairwise orthogonal for any fixed h.

Now let $\vec{x}_{i}=\lim _{h \rightarrow 0^{+}} \vec{x}_{i}(h)$ and let $\lambda_{i}=\lim _{h \rightarrow 0^{+}} \lambda_{i}(h)$. Then

$$
A \vec{x}_{i}=\lim _{h \rightarrow 0^{+}}(A+h M) \vec{x}_{i}(h)=\lim _{h \rightarrow 0^{+}} \lambda_{i}(h) \vec{x}_{i}(h)=\lambda_{i} \vec{x}_{i}
$$

and so $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are eigenvectors of A with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Moreover, they are orthonormal, because

$$
\begin{gathered}
\vec{x}_{i} \cdot \vec{x}_{j}=\lim _{h \rightarrow 0^{+}} \vec{x}_{i}(h) \cdot \vec{x}_{j}(h)=\lim _{h \rightarrow 0^{+}} 0=0 \quad i \neq j \\
\vec{x}_{i} \cdot \vec{x}_{i}=\lim _{h \rightarrow 0^{+}} \vec{x}_{i}(h) \cdot \vec{x}_{i}(h)=\lim _{h \rightarrow 0^{+}} 1=1
\end{gathered}
$$

Thus, we have produced an orthonormal eigenbasis of A. (The reason this argument fails when A is not symmetric, is because the eigenvectors $\vec{x}_{1}(h), \ldots, \vec{x}_{n}(h)$ can collapse onto each other, i.e. their pairwise dot products can converge to 1.)

[^0]
[^0]: ${ }^{1}$ Roughly, the reason why such a matrix M exists is because a 'generic' degree n polynomial, i.e. where all of the coefficients are chosen at random, will have distinct roots. Therefore, a generic $n \times n$ matrix will have distinct eigenvalues.

