Math 21b, March 30: Stability (cont.), Symmetric Matrices and the Spectral Theorem

1. For each of the following matrices A, determine whether it is stable (i.e., asymptotically stable).

(a)
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 0.99 & 1000 \\ 0 & 0.9 \end{bmatrix}$

Not stable: $A^t = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$, thus the initial condition $\vec{x}(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ gives $\vec{x}(t) = \begin{bmatrix} t \\ 1 \end{bmatrix}$ which goes off to infinity.

Stable: Has distinct eigenvalues 0.99 and 0.9, and therefore it's diagonalizable with eigenvalues of magnitude less than $1 \implies$ stable.

2. Which rotation dilation matrices have trajectories which are circles?

Solution: In order for the trajectory to be a closed loop, we must have eigenvalues satisfying $|\lambda| = 1$. These are the **rotation matrices** (i.e. no dilation component) $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. (Note this matrix, which represents rotation counterclockwise by θ around the origin, has eigenvalues $e^{\pm i\theta}$.)

The **dot product** for **complex vectors** is defined by the formula

 $v \cdot w = \overline{v}^T w$

 $(\overline{v} \text{ is the complex conjugate of the vector } v.)$ If A is any matrix, then $v \cdot (Aw) = (\overline{A}^T v) \cdot w$. This is by algebraic manipulation:

$$v \cdot (Aw) = \overline{v}^T (Aw) = (\overline{v}^T A)w = \overline{\overline{A}^T v}^T w = (\overline{A}^T v) \cdot w$$

A is called **symmetric** if $A^T = A$.

```
A is called anti-symmetric if A^T = -A.
```

- 3. Suppose that A is a symmetric matrix with real entries. In this problem, we will show that its eigenvalues are real and it has an eigenbasis of orthonormal vectors.
 - (a) Show that $(A\vec{x}) \cdot \vec{y} = \vec{x} \cdot (A\vec{y})$ for any vectors \vec{x}, \vec{y} .

Solution:

$$\vec{x} \cdot (A\vec{y}) = (\vec{A}^T \vec{x}) \cdot \vec{y} = (A^T \vec{x}) \cdot \vec{y} = (A\vec{x}) \cdot \vec{y}$$

The first step is by the property in the first box above. The second step is because A has all real entries, and the third step is because A is symmetric.

(b) Suppose that \vec{v} is a unit vector with eigenvalue λ . Argue that λ must be *real* by comparing $(A\vec{v}) \cdot \vec{v}$ and $\vec{v} \cdot (A\vec{v})$.

Solution: By part (a), $(A\vec{v}) \cdot \vec{v} = \vec{v} \cdot (A\vec{v})$. Separately calculating each,

$$\vec{v} \cdot (A\vec{v}) = \vec{v} \cdot (\lambda\vec{v}) = \lambda(\vec{v} \cdot \vec{v})$$
$$(A\vec{v}) \cdot \vec{v} = (\lambda\vec{v}) \cdot \vec{v} = \overline{\lambda}(\vec{v} \cdot \vec{v})$$

Thus, $\lambda = \overline{\lambda}$ and so λ is real.

(c) Suppose that \vec{v}_1 and \vec{v}_2 have different eigenvalues λ_1 and λ_2 , respectively. Argue that \vec{v}_1 and \vec{v}_2 are orthogonal by comparing $(A\vec{v}_1) \cdot \vec{v}_2$ and $\vec{v}_1 \cdot (A\vec{v}_2)$.

Solution:

 $\lambda_1(\vec{v}_1 \cdot \vec{v}_2) = (A\vec{v}_1) \cdot \vec{v}_2 = \vec{v}_1 \cdot (A\vec{v}_2) = \lambda_2(\vec{v}_1 \cdot \vec{v}_2)$

The first step is because \vec{v}_1 is an eigenvector, the middle step is by part (a), and the last step is because \vec{v}_2 is an eigenvector. Therefore, $(\lambda_1 - \lambda_2)(\vec{v}_1 \cdot \vec{v}_2) = 0$. Since $\lambda_1 - \lambda_2 \neq 0$, it follows that $\vec{v}_1 \cdot \vec{v}_2 = 0$, i.e. $\vec{v}_1 \perp \vec{v}_2$.

(d) Can you argue that if A is symmetric, then it must be diagonalizable? (This is not so easy!)

Solution: Two proofs of this fact will be given at the end of this worksheet.

4. Suppose that A has real eigenvalues and has an orthonormal eigenbasis. That is, $A = SDS^{-1}$ where D is a real diagonal matrix, and S is orthogonal. What is the relationship between A and A^{T} ?

Solution: They are equal, because $S^T = S^{-1}$ and $D^T = D$. $A^T = (SDS^{-1})^T = (S^{-1})^T D^T S^T = SDS^{-1} = A$

The last two problems have proven the **Spectral Theorem.** This theorem states that a real matrix is symmetric if and only if it is diagonalizable with an orthonormal eigenbasis.

- 5. Let $A = \begin{bmatrix} -3 & 4 \\ 4 & 3 \end{bmatrix}$.
 - (a) Is A diagonalizable over \mathbb{R} ? If so, find a diagonal matrix that A is similar to.

Solution: A is symmetric, so by the Spectral Theorem, it must be diagonalizable over \mathbb{R} . Or, we can prove it by explicitly computing the eigenvalues: they are 5 and -5, and because there are no multiple roots, A must be diagonalizable. Therefore, A is similar to $\begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix}$ and also similar to $\begin{bmatrix} -5 & 0 \\ 0 & 5 \end{bmatrix}$.

(b) Describe the linear transformation $T(\vec{x}) = A\vec{x}$ geometrically.

Solution: It's a reflection dilation, because it has an eigenvector of eigenvalue 5, one of eigenvalue -5, and these are orthogonal to each other. The eigenspace of eigenvalue 5 is the line of reflection (which turns out to be the span of $\begin{bmatrix} 1\\2 \end{bmatrix}$).

(c) Let $M = \begin{bmatrix} 997 & 4 \\ 4 & 1003 \end{bmatrix}$. What is the relationship between the eigenvalues of A and the eigenvalues of M? What about the eigenvectors?

Solution: M = A + 1000I. Therefore, M and A have the same eigenvectors, and M has eigenvalues 1005 and 995.

6. Let V be the plane x + 2y + 3z = 0 in \mathbb{R}^3 and let A be the matrix of reflection over V. Is A symmetric? Explain carefully.

Solution: Yes. Let \vec{v}_1, \vec{v}_2 be an orthonormal basis for the plane V, and let \vec{v}_3 be a unit vector orthogonal to V. Then $A\vec{v}_1 = \vec{v}_1, A\vec{v}_2 = \vec{v}_2$, and $A\vec{v}_3 = -\vec{v}_3$. That is, $(\vec{v}_1, \vec{v}_2, \vec{v}_3)$ form an orthonormal eigenbasis for A with eigenvalues 1, 1, -1. Therefore, by the spectral theorem, A is symmetric.

7. The matrix $A = \begin{bmatrix} 101 & 1 & 2 \\ 1 & 101 & 2 \\ 2 & 2 & 104 \end{bmatrix}$ is symmetric. Find its eigenvalues and an *orthogonal* eigenbasis.

(no need to normalize the eigenvectors for this question)

Solution: Let's instead work with the matrix $M = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix}$, as M has the same eigenvectors as A, and its eigenvalues are just 100 less. Since rank(M) = 2, M has 0 as an eigenvalue with multiplicity 2. To find eigenvectors, notice that

$$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+y+2z \\ x+y+2z \\ 2x+2y+4z \end{bmatrix}$$

and the only way that this can be a *nonzero* multiple of
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 is if
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 is a multiple of
$$\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
. Plugging this in, we find that
$$\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
 is an eigenvector with eigenvalue 6.

The eigenspace of eigenvalue 0 must be the orthogonal complement of the span of $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$ - i.e., it is

the kernel of $\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$. We can calculate a basis is $\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$ and then using Gram-Schmidt to orthogonalize, we get the orthogonal eigenvectors $\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$ with eigenvalues $\boxed{0}$.

8. True or false: If A and B are similar (i.e. $A = SBS^{-1}$ for some S), then they have the same eigenvalues.

True: They have the same characteristic polynomial:

$$\det(A - \lambda I) = \det(SBS^{-1} - \lambda I) = \det(SBS^{-1} - \lambda(SIS^{-1})) = \det(S(B - \lambda I)S^{-1})$$
$$= \det(S)\det(B - \lambda I)\det(S^{-1}) = \det(B - \lambda I)\det(S)\det(S^{-1}) = \det(B - \lambda I)$$

9. True or false: If A and B are matrices with the same eigenvalues and multiplicities, then they are similar.

False: Here is a counterexample. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

10. True or false: If A and B are diagonalizable matrices with the same eigenvalues and multiplicities, then they are similar.

True: If A and B have the same eigenvalues and multiplicities, then $A = SDS^{-1}$ and $B = RDR^{-1}$ where D is the diagonal matrix with the eigenvalues along the diagonal. The second equation can be converted into $R^{-1}BR = D$, and then plugging this into the equation for A,

$$A = SDS^{-1} = S(R^{-1}BR)S^{-1} = (SR^{-1})B(RS^{-1}) = (SR^{-1})B(SR^{-1})^{-1}$$

Thus $A \sim B$.

Now, as promised in 3(d), I will prove that any real symmetric matrix A is diagonalizable, which is the missing piece of the proof of the Spectral Theorem. I will provide two proofs.

Proof 1 (Pure algebra): First, I will prove that A has some nonzero real eigenvector \vec{x}_1 . We have shown that the characteristic polynomial has all of its roots real (this follows from 3(b)). Let λ_1 be one of its roots. This means that det $(A - \lambda_1 I_n) = 0$, and so ker $(A - \lambda_1 I_n)$ contains some nonzero vector \vec{x}_1 . By definition, \vec{x}_1 is a nonzero real eigenvectors (with eigenvalue λ_1), so this proves my first claim.

Next, let $W_1 \subset \mathbb{R}^n$ be the (n-1)-dimensional space orthogonal to \vec{x}_1 . I claim that A preserves W_1 : i.e., it sends any vector in W_1 to another vector in W_1 . This is true because if $\vec{w} \in W_1$, then $\vec{w} \cdot \vec{x}_1 = 0$, and thus

$$(A\vec{w}) \cdot \vec{x}_1 = \vec{w} \cdot (A\vec{x}_1) = \lambda_1(\vec{w} \cdot \vec{x}_1) = 0$$

and therefore $A\vec{w}$ is in W_1 . This proves my second claim.

Now, the same argument can be used to show that W_1 contains an eigenvector \vec{x}_2 of eigenvalue λ_2 , and then we can let W_2 be the orthogonal complement of \vec{x}_2 in W_1 , and A preserves W_2 . Then we can show W_2 contains an eigenvector \vec{x}_3 , etc. In this way, we can produce an orthonormal eigenbasis $\vec{x}_1, \ldots, \vec{x}_n$.

Proof 2 (Continuity): Pick some symmetric matrix M such that the characteristic polynomial of A + hM has all roots distinct for all $h \in (0, \epsilon)$, for some small $\epsilon > 0$.¹ Then for each $h \in (0, \epsilon)$, A + hM is diagonalizable (because the geometric multiplicity and algebraic multiplicity of each eigenvalue has to be 1). By 3(c), the (one-dimensional) eigenspaces of A + hM are orthogonal to each other, and thus, A + hM is orthogonally diagonalizable.

For each $h \in (0, \epsilon)$, let $\lambda_1(h), \ldots, \lambda_n(h)$ be the eigenvalues of A+hM, chosen so that $\lambda_1(h), \ldots, \lambda_n(h)$ are continuous functions in h. Let $\vec{x}_1(h), \ldots, \vec{x}_n(h)$ be corresponding unit eigenvectors, so that $\vec{x}_1(h), \ldots, \vec{x}_n(h)$ are continuous vector-valued functions in h. That is, for each $h \in (0, \epsilon)$,

$$(A + hM)\vec{x}_i(h) = \lambda_i(h)\vec{x}_i(h) \qquad (1 \le i \le n)$$

Note that because A + hM is symmetric, the vectors $\vec{x}_1(h), \ldots, \vec{x}_n(h)$ are pairwise orthogonal for any fixed h.

Now let $\vec{x}_i = \lim_{h \to 0^+} \vec{x}_i(h)$ and let $\lambda_i = \lim_{h \to 0^+} \lambda_i(h)$. Then

$$A\vec{x}_i = \lim_{h \to 0^+} (A + hM)\vec{x}_i(h) = \lim_{h \to 0^+} \lambda_i(h)\vec{x}_i(h) = \lambda_i \vec{x}_i$$

and so $\vec{x}_1, \ldots, \vec{x}_n$ are eigenvectors of A with eigenvalues $\lambda_1, \ldots, \lambda_n$. Moreover, they are orthonormal, because

$$\vec{x}_{i} \cdot \vec{x}_{j} = \lim_{h \to 0^{+}} \vec{x}_{i}(h) \cdot \vec{x}_{j}(h) = \lim_{h \to 0^{+}} 0 = 0 \qquad i \neq j$$
$$\vec{x}_{i} \cdot \vec{x}_{i} = \lim_{h \to 0^{+}} \vec{x}_{i}(h) \cdot \vec{x}_{i}(h) = \lim_{h \to 0^{+}} 1 = 1$$

Thus, we have produced an orthonormal eigenbasis of A. (The reason this argument fails when A is not symmetric, is because the eigenvectors $\vec{x}_1(h), \ldots, \vec{x}_n(h)$ can collapse onto each other, i.e. their pairwise dot products can converge to 1.)

¹Roughly, the reason why such a matrix M exists is because a 'generic' degree n polynomial, i.e. where all of the coefficients are chosen at random, will have distinct roots. Therefore, a generic $n \times n$ matrix will have distinct eigenvalues.