## Math 21b, March 30: Stability (cont.), Symmetric Matrices and the Spectral Theorem

1. For each of the following matrices $A$, determine whether it is stable (i.e., asymptotically stable).
(a) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{cc}0.99 & 1000 \\ 0 & 0.9\end{array}\right]$
2. Which rotation dilation matrices have trajectories which are circles?

The dot product for complex vectors is defined by the formula

$$
v \cdot w=\bar{v}^{T} w
$$

( $\bar{v}$ is the complex conjugate of the vector $v$.) If $A$ is any matrix, then $v \cdot(A w)=\left(\bar{A}^{T} v\right) \cdot w$.

| $A$ is called symmetric if |
| :---: |
| $A$ is called anti-symmetric if |

3. Suppose that $A$ is a symmetric matrix with real entries. In this problem, we will show that its eigenvalues are real and it has an eigenbasis of orthonormal vectors.
(a) Show that $(A \vec{x}) \cdot \vec{y}=\vec{x} \cdot(A \vec{y})$ for any vectors $\vec{x}, \vec{y}$.
(b) Suppose that $\vec{v}$ is a unit vector with eigenvalue $\lambda$. Argue that $\lambda$ must be real by comparing $(A \vec{v}) \cdot \vec{v}$ and $\vec{v} \cdot(A \vec{v})$.
(c) Suppose that $\vec{v}_{1}$ and $\vec{v}_{2}$ have different eigenvalues $\lambda_{1}$ and $\lambda_{2}$, respectively. Argue that $\vec{v}_{1}$ and $\vec{v}_{2}$ are orthogonal by comparing $\left(A \vec{v}_{1}\right) \cdot \vec{v}_{2}$ and $\vec{v}_{1} \cdot\left(A \vec{v}_{2}\right)$.
(d) Can you argue that if $A$ is symmetric, then it must be diagonalizable? (This is not so easy!)
4. Suppose that $A$ has real eigenvalues and has an orthonormal eigenbasis. That is, $A=S D S^{-1}$ where $D$ is a real diagonal matrix, and $S$ is orthogonal. What is the relationship between $A$ and $A^{T}$ ?

The last two problems have proven the Spectral Theorem. This theorem states that a real matrix is symmetric if and only if it is diagonalizable with an orthonormal eigenbasis.
5. Let $A=\left[\begin{array}{cc}-3 & 4 \\ 4 & 3\end{array}\right]$.
(a) Is $A$ diagonalizable over $\mathbb{R}$ ? If so, find a diagonal matrix that $A$ is similar to.
(b) Describe the linear transformation $T(\vec{x})=A \vec{x}$ geometrically.
(c) Let $M=\left[\begin{array}{cc}997 & 4 \\ 4 & 1003\end{array}\right]$. What is the relationship between the eigenvalues of $A$ and the eigenvalues of $M$ ? What about the eigenvectors?
6. Let $V$ be the plane $x+2 y+3 z=0$ in $\mathbb{R}^{3}$ and let $A$ be the matrix of reflection over $V$. Is $A$ symmetric? Explain carefully.
7. The matrix $A=\left[\begin{array}{ccc}101 & 1 & 2 \\ 1 & 101 & 2 \\ 2 & 2 & 104\end{array}\right]$ is symmetric. Find its eigenvalues and an orthogonal eigenbasis.
8. True or false: If $A$ and $B$ are similar (i.e. $A=S B S^{-1}$ for some $S$ ), then they have the same eigenvalues.
9. True or false: If $A$ and $B$ are matrices with the same eigenvalues, then they are similar.
10. True or false: If $A$ and $B$ are diagonalizable matrices with the same eigenvalues, then they are similar.

