Math 21b, March 28: Complex Eigenvalues and Stability

1. Calculate the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$.

Solution: One can easily compute that the characteristic polynomial is $\operatorname{det}(A-\lambda I)=1-\lambda^{3}=$ $(1-\lambda)\left(1+\lambda+\lambda^{2}\right)$. The zeroes of this polynomial are the cube roots of unity, i.e. the numbers 1 , $e^{2 \pi i / 3}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$, and $e^{4 \pi i / 3}=-\frac{1}{2}-i \frac{\sqrt{3}}{2}$. To reduce clutter, let us write $\omega=e^{2 \pi i / 3}$. Then this means the three eigenvalues are $1, \omega, \omega^{2}$.

The eigenvectors can be directly computed

$$
\begin{aligned}
& \operatorname{ker}\left[\begin{array}{ccc}
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right]=\operatorname{span}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& \operatorname{ker}\left[\begin{array}{ccc}
-\omega & 0 & 1 \\
1 & -\omega & 0 \\
0 & 1 & -\omega
\end{array}\right]=\operatorname{span}\left[\begin{array}{c}
1 \\
\omega^{2} \\
\omega
\end{array}\right] \\
& \operatorname{ker}\left[\begin{array}{ccc}
-\omega^{2} & 0 & 1 \\
1 & -\omega^{2} & 0 \\
0 & 1 & -\omega^{2}
\end{array}\right]=\operatorname{span}\left[\begin{array}{c}
1 \\
\omega \\
\omega^{2}
\end{array}\right]
\end{aligned}
$$

Note: Here's an interpretation of why these are the eigenvectors. The matrix $\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ takes a vector $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and outputs the vector $\left[\begin{array}{l}z \\ x \\ y\end{array}\right]$, i.e. it just shifts the entries down by one (and knocks the last entry up to the top). Now check what this operation does to the three vectors $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ \omega^{2} \\ \omega\end{array}\right],\left[\begin{array}{c}1 \\ \omega \\ \omega^{2}\end{array}\right]$.

Complex numbers: A complex number is a number of the form $a+b i$, where $i=\sqrt{-1} . a$ is the real part and $b i$ is the imaginary part. Addition of complex numbers is done componentwise, and multiplication is done using the fact that $i^{2}=-1$.

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i \quad(a+b i)(c+d i)=(a c-b d)+(a d+b c) i
$$

Euler's formula: Using Taylor series, one can show that $e^{i \theta}=\cos \theta+i \sin \theta$. This provides us a great tool to multiply complex numbers by using polar coordinates, i.e. expressing a complex number as $r e^{i \theta}=r \cos \theta+i r \sin \theta$, where r is the length of the complex number. I.e., we use the formula

$$
\left(r_{1} e^{i \theta_{1}}\right)\left(r_{2} e^{i \theta_{2}}\right)=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

Length of a complex number: The length of a complex number $a+b i$ is found by multiplying it by its conjugate and taking the square root.

$$
\sqrt{(a+b i)(a-b i)}=\sqrt{a^{2}+b^{2}}
$$

2. In this question, we'll use polar coordinates to calculate $(1+i)^{10}$.
(a) Write the complex number $1+i$ in polar coordinates $r^{i \theta}$ by finding its length r and its angle θ.

Solution: $1+i$ has length $\sqrt{1^{2}+1^{2}}=\sqrt{2}$, and angle $\pi / 4$. Thus, $1+i=\sqrt{2} e^{\pi i / 4}$.
(b) Use this form to calculate $(1+i)^{10}$. Can you find a geometric description of what multiplication by $1+i$ does in the complex plane?

$$
(1+i)^{10}=(\sqrt{2})^{10} e^{10 \pi i / 4}=32 e^{5 \pi i / 2}=32 i
$$

because if we rotate counterclockwise by an angle of $5 \pi / 2$ from the positive real (x) axis (which is the same as rotating by just $\pi / 2$), we will be pointing vertically along the positive imaginary (y) axis in the complex plane.

In general, for any complex number $r e^{i \theta},(1+i) r e^{i \theta}=(r \sqrt{2}) e^{i(\theta+\pi / 4)}$, i.e. multiplication by $1+i$ will lengthen the complex number by a factor of $\sqrt{2}$ and rotate it by $\pi / 4$.

Complex conjugates: For any complex number $a+b i$, its conjugate is the complex number $a-b i$. In polar coordinates, the conjugate of $r e^{i \theta}$ is $r e^{-i \theta}$. Complex eigenvalues and eigenvectors of matrices come in conjugate pairs.

Dot product of complex vectors: If we have two vectors \vec{v}, \vec{w} with complex entries, then to take their dot product $v \cdot w$, we have to perform the multiplication $\bar{v}^{T} w$. I.e., we have to transpose v AND conjugate all of the entries, then multiply the resulting row vector by the column vector w. This is so that the dot product of a vector with itself equals the squared length. For example, if $v=\left[\begin{array}{c}3+i \\ 2\end{array}\right]$, then

$$
v \cdot v=\bar{v}^{T} v=\left[\begin{array}{ll}
3-i & 2
\end{array}\right]\left[\begin{array}{c}
3+i \\
2
\end{array}\right]=(3-i)(3+i)+(2)(2)=10+4=14
$$

Matrix multiplication with complex numbers: Multiplying matrices with complex numbers works just the same as multiplying matrices with real numbers. Row reduction to compute matrix inverses, kernel, etc also works the same.
3. Let $A=\left[\begin{array}{cc}-3 & -9 \\ 1 & -3\end{array}\right]$. In this problem, we will solve the discrete dynamical system $\vec{x}(t+1)=A \vec{x}(t)$ with initial condition $\vec{x}(0)=\left[\begin{array}{l}0 \\ 2\end{array}\right]$. Remember that we can derive $\vec{x}(t)=A^{t} \vec{x}(0)$, so we are essentially trying to calculate A^{t}.
(a) Calculate the eigenvalues and eigenvectors of A. Use this to diagonalize A. (Your eigenvectors should have complex entries!)

Solution: First, the eigenvalues. We compute the characteristic polynomial and then find the
roots using the quadratic formula.

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}+6 \lambda+18 \Longrightarrow \lambda=-3 \pm 3 i
$$

Let $\lambda_{1}=-3+3 i$ and $\lambda_{2}=-3-3 i$. Eigenvectors are just computed in the same way.

$$
\begin{aligned}
& \operatorname{ker}\left(A-\lambda_{1} I\right)=\operatorname{ker}\left[\begin{array}{cc}
-3 i & -9 \\
1 & -3 i
\end{array}\right]=\operatorname{span}\left[\begin{array}{c}
3 i \\
1
\end{array}\right] \\
& \operatorname{ker}\left(A-\lambda_{2} I\right)=\operatorname{ker}\left[\begin{array}{cc}
3 i & -9 \\
1 & 3 i
\end{array}\right]=\operatorname{span}\left[\begin{array}{c}
-3 i \\
1
\end{array}\right]
\end{aligned}
$$

(Note that the eigenvector for λ_{2} is just the conjugate of the eigenvector for λ_{1}.)
(b) Write down an expression for the matrix A^{t} in the form $S D S^{-1}$ with D diagonal, and multiply this by $\vec{x}(0)$ to get $\vec{x}(t)$. (Note, the multiplication is quicker if you first multiply S^{-1} by $\vec{x}(0)$, instead of multiplying matrices.)

Solution: We can express $A=S D S^{-1}$ with $D=\left[\begin{array}{cc}-3+3 i & 0 \\ 0 & -3-3 i\end{array}\right]$ and $S=\left[\begin{array}{cc}3 i & -3 i \\ 1 & 1\end{array}\right]$. We need to calculate $(-3+3 i)^{t}$ and $(-3-3 i)^{t}$. $-3+3 i$ has length $3 \sqrt{2}$ and angle $3 \pi / 4$, while $-3-3 i$ has length $3 \sqrt{2}$ and angle $5 \pi / 4=-3 \pi / 4$. Thus,

$$
\begin{gathered}
(-3+3 i)^{t}=(3 \sqrt{2})^{t} e^{3 \pi i t / 4}=(3 \sqrt{2})^{t}\left(\cos \frac{3 \pi t}{4}+i \sin \frac{3 \pi t}{4}\right) \\
(-3-3 i)^{t}=(3 \sqrt{2})^{t} e^{-3 \pi i t / 4}=(3 \sqrt{2})^{t}\left(\cos \frac{3 \pi t}{4}-i \sin \frac{3 \pi t}{4}\right)
\end{gathered}
$$

One can compute via row reduction that $S^{-1}=\frac{1}{6 i}\left[\begin{array}{cc}1 & 3 i \\ -1 & 3 i\end{array}\right]$. Thus,

$$
\begin{aligned}
& \vec{x}(t)=S D^{t} S^{-1}\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{cc}
3 i & -3 i \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
(-3+3 i)^{t} & 0 \\
0 & (-3-3 i)^{t}
\end{array}\right] \frac{1}{6 i}\left[\begin{array}{cc}
1 & 3 i \\
-1 & 3 i
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right] \\
& =(3 \sqrt{2})^{t}\left[\begin{array}{cc}
3 i & -3 i \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \frac{3 \pi t}{4}+i \sin \frac{3 \pi t}{4} & 0 \\
0 & \cos \frac{3 \pi t}{4}-i \sin \frac{3 \pi t}{4}
\end{array}\right] \frac{1}{6 i}\left[\begin{array}{cc}
1 & 3 i \\
-1 & 3 i
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right]
\end{aligned}
$$

Now proceed to multiply this out.

$$
\begin{gathered}
=(3 \sqrt{2})^{t}\left[\begin{array}{cc}
3 i & -3 i \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \frac{3 \pi t}{4}+i \sin \frac{3 \pi t}{4} & 0 \\
0 & \cos \frac{3 \pi t}{4}-i \sin \frac{3 \pi t}{4}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
=(3 \sqrt{2})^{t}\left[\begin{array}{cc}
3 i & -3 i \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
\cos \frac{3 \pi t}{4}+i \sin \frac{3 \pi t}{4} \\
\cos \frac{3 \pi t}{4}-i \sin \frac{3 \pi t}{4}
\end{array}\right] \\
=(3 \sqrt{2})^{t}\left[\begin{array}{c}
-6 \sin \frac{3 \pi t}{4} \\
2 \cos \frac{3 \pi t}{4}
\end{array}\right]
\end{gathered}
$$

(c) In words, how does $\vec{x}(t)$ behave as t increases? (Does it grow or shrink? Which quadrant will it be in?)

Solution: As t increases, we can see that the quadrant will vary, because sin and cos oscillate: in fact, it will be a counterclockwise spiral because the x-coordinate is $-\sin$ and the y-coordinate is cos. As $t \rightarrow \infty$, the factor at the front grows without bound, and so $\vec{x}(t)$ spirals outwards.

Stability: The matrix A associated to the discrete dynamical system $\vec{x}(t+1)=A \vec{x}(t)$ is called

- asymptotically stable (or just stable) if $\vec{x}(t) \rightarrow 0$ as $t \rightarrow \infty$, for every initial condition $\vec{x}(0)$. Equivalently, if A^{t} converges to the zero matrix as $t \rightarrow \infty$.
- unstable if $\vec{x}(t) \rightarrow \infty$ as $t \rightarrow \infty$ for some initial condition $\vec{x}(0)$. Equivalently, if some entry of A^{t} diverges as $t \rightarrow \infty$.
- nonasymptotically stable (we will not call these systems stable) if $\vec{x}(t)$ stays bounded (but does not necessarily go to 0) as $t \rightarrow \infty$, for every $\vec{x}(0)$.

We will not distinguish between unstable and nonasymptotically stable. Both of these situations will be called 'not stable'.
4. In each of the following situations, we have a discrete dynamical system whose matrix A is diagonalizable with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and associated nonzero eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$. Write down a formula for $\vec{x}(t)$ in terms of the given initial condition $\vec{x}(0)$, and then explain what happens to $\vec{x}(t)$ as $t \rightarrow \infty$.
(a) $\lambda_{1}=0.7, \lambda_{2}=-0.3, \vec{x}(0)=\vec{v}_{1}+\vec{v}_{2}$.

Solution: $\vec{x}(t)=(0.7)^{t} \vec{v}_{1}+(-0.3)^{t} \vec{v}_{2}$. As $t \rightarrow \infty, \vec{x}(t) \rightarrow 0$. So this system is stable.
(b) $\lambda_{1}=2, \lambda_{2}=1, \vec{x}(0)=v_{1}-v_{2}$.

Solution: $\vec{x}(t)=2^{t} \vec{v}_{1}+1^{t} \vec{v}_{2}$. As $t \rightarrow \infty, \vec{x}(t)$ grows without bound in magnitude. So this system is unstable.
(c) $\lambda_{1}=1+i, \lambda_{2}=1-i, \lambda_{3}=1, \vec{x}(0)=v_{1}+v_{2}+v_{3}$.

Solution: $\vec{x}(t)=(1+i)^{t} \vec{v}_{1}+(1-i)^{t} \vec{v}_{2}+1^{t} \vec{v}_{2}=(\sqrt{2})^{t} e^{\pi i t / 4} \vec{v}_{1}+(\sqrt{2})^{t} e^{-\pi i t / 4} \vec{v}_{2}+\vec{v}_{3}$. As $t \rightarrow \infty$, this grows without bound in magnitude. Therefore, this system is unstable.
(d) $\lambda_{1}=1, \lambda_{3}=-1, \vec{x}(0)=2 v_{1}+v_{2}$.

Solution: $\vec{x}(t)=2(1)^{t} \vec{v}_{1}+(-1)^{t} \vec{v}_{2}$. As t increases, this flips back and forth between $2 \vec{v}_{1}+\vec{v}_{2}$ and $2 \vec{v}_{1}-\vec{v}_{2}$. So this system is nonasymptotically stable - in particular, it is not stable.
5. Can you give a simple criterion to determine whether a matrix A is asymptotically stable?

Solution: We have seen above that if A is diagonalizable, then A is asymptotically stable if and only if all of its eigenvalues λ satisfy $|\lambda|<1$. We will see in the next class that this holds for nondiagonalizable matrices too. That is, A is asymptotically stable iff every eigenvalue λ satisfies $|\lambda|<1$.
6. A mouse is in a maze with three rooms, with all three connected to each other. At time $t=0$, the mouse is in room 1, and at each step, the mouse walks to one of the two adjacent rooms, chosen randomly. If $\vec{x}(t)$ is a vector containing the probabilities that the mouse is in each of the three rooms at time t, then this defines the dynamical system $\vec{x}(t+1)=A \vec{x}(t)$ with $A=\left[\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right]$ and $\vec{x}(0)=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ (why?). Solve for $\vec{x}(t)$, and determine what happens as $t \rightarrow \infty .^{1}$

Solution: Calculate the characteristic polynomial:

$$
\operatorname{det}\left[\begin{array}{ccc}
-\lambda & 1 / 2 & 1 / 2 \\
1 / 2 & -\lambda & 1 / 2 \\
1 / 2 & 1 / 2 & -\lambda
\end{array}\right]=-\lambda^{3}+\frac{3}{4} \lambda+1 / 4=-(\lambda-1)\left(\lambda^{2}+\lambda+\frac{1}{4}\right)=-(\lambda-1)(\lambda+1 / 2)^{2}
$$

so we have eigenvalues $1,-1 / 2,-1 / 2$. Calculating the eigenvectors,

$$
\begin{gathered}
\operatorname{ker}\left[\begin{array}{ccc}
-1 & 1 / 2 & 1 / 2 \\
1 / 2 & -1 & 1 / 2 \\
1 / 2 & 1 / 2 & -1
\end{array}\right]=\operatorname{span}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
\operatorname{ker}\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & 1 / 2
\end{array}\right]=\operatorname{span}\left(\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right)
\end{gathered}
$$

Now to calculate $\vec{x}(t)$, we can write $A=S D S^{-1}$ with $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 / 2 & 0 \\ 0 & 0 & 1 / 2\end{array}\right]$ and $S=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{array}\right]$, and exponentiate in the usual way, i.e. calculate

$$
\vec{x}(t)=A^{t} \vec{x}(0)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & (1 / 2)^{t} & 0 \\
0 & 0 & (1 / 2)^{t}
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Instead, I'm going to describe a second (equivalent) way of doing it. Write $\vec{x}(0)$ as a linear combination of the eigenvectors of A that we found.

$$
\vec{x}(0)=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\frac{1}{3}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+\frac{1}{3}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

[^0]Now apply A^{t} : we know how A^{t} acts on each of these eigenvectors.

$$
\begin{aligned}
A^{t} \vec{x}(0)=\frac{1}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] & +(-1 / 2)^{t} \frac{1}{3}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+(-1 / 2)^{t} \frac{1}{3}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{c}
1+2(-1 / 2)^{t} \\
1-(-1 / 2)^{t} \\
1-(-1 / 2)^{t}
\end{array}\right]
\end{aligned}
$$

As $t \rightarrow \infty$, this converges to $\left[\begin{array}{l}1 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right]$. In other words, after the mouse has been wandering around in this maze for a long time, we should expect the mouse to be in each room with probability $1 / 3$. This makes sense!

Note: We did this analysis with the example of a simple maze of three rooms with any two connected, and all transition probabilities equal to $1 / 2$. But the same method works for ANY sort of random walk, or in general, any Markov chain. This, for example, is the theory underlying the Google Pagerank algorithm, among many, many other applications.

[^0]: ${ }^{1}$ This is an example of a random walk, which is a special case of a Markov process, from probability. These discrete dynamical systems have applications all over the place. The Perron-Frobenius theorem gives conditions for such a system to be stable.

