
Math 21b, March 28: Complex Eigenvalues and Stability

1. Calculate the eigenvalues and eigenvectors of the matrix A =

0 0 1
1 0 0
0 1 0

.

Solution: One can easily compute that the characteristic polynomial is det(A − λI) = 1 − λ3 =
(1 − λ)(1 + λ + λ2). The zeroes of this polynomial are the cube roots of unity, i.e. the numbers 1,

e2πi/3 = − 1
2 + i

√
3
2 , and e4πi/3 = − 1

2 − i
√
3
2 . To reduce clutter, let us write ω = e2πi/3. Then this

means the three eigenvalues are 1, ω, ω2.

The eigenvectors can be directly computed

ker

−1 0 1
1 −1 0
0 1 −1

 = span

11
1


ker

−ω 0 1
1 −ω 0
0 1 −ω

 = span

 1
ω2

ω


ker

−ω2 0 1
1 −ω2 0
0 1 −ω2

 = span

 1
ω
ω2


Note: Here's an interpretation of why these are the eigenvectors. The matrix

0 0 1
1 0 0
0 1 0

 takes a vectorxy
z

 and outputs the vector

zx
y

, i.e. it just shifts the entries down by one (and knocks the last entry

up to the top). Now check what this operation does to the three vectors

11
1

,
 1
ω2

ω

,
 1
ω
ω2

.
Complex numbers: A complex number is a number of the form a + bi, where i =

√
−1. a is the

real part and bi is the imaginary part. Addition of complex numbers is done componentwise, and
multiplication is done using the fact that i2 = −1.

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

Euler's formula: Using Taylor series, one can show that eiθ = cos θ + i sin θ. This provides us a
great tool to multiply complex numbers by using polar coordinates, i.e. expressing a complex number
as reiθ = r cos θ + ir sin θ, where r is the length of the complex number. I.e., we use the formula

(r1e
iθ1)(r2e

iθ2) = r1r2e
i(θ1+θ2)

Length of a complex number: The length of a complex number a+ bi is found by multiplying it
by its conjugate and taking the square root.√

(a+ bi)(a− bi) =
√
a2 + b2
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2. In this question, we'll use polar coordinates to calculate (1 + i)10.

(a) Write the complex number 1 + i in polar coordinates riθ by �nding its length r and its angle θ.

Solution: 1 + i has length
√
12 + 12 =

√
2, and angle π/4. Thus, 1 + i =

√
2eπi/4 .

(b) Use this form to calculate (1 + i)10. Can you �nd a geometric description of what multiplication
by 1 + i does in the complex plane?

(1 + i)10 = (
√
2)10e10πi/4 = 32e5πi/2 = 32i

because if we rotate counterclockwise by an angle of 5π/2 from the positive real (x) axis (which
is the same as rotating by just π/2), we will be pointing vertically along the positive imaginary
(y) axis in the complex plane.

In general, for any complex number reiθ, (1+ i)reiθ = (r
√
2)ei(θ+π/4), i.e. multiplication by 1+ i

will lengthen the complex number by a factor of
√
2 and rotate it by π/4.

Complex conjugates: For any complex number a+ bi, its conjugate is the complex number a− bi.
In polar coordinates, the conjugate of reiθ is re−iθ. Complex eigenvalues and eigenvectors of matrices
come in conjugate pairs.

Dot product of complex vectors: If we have two vectors ~v, ~w with complex entries, then to take
their dot product v ·w, we have to perform the multiplication vTw. I.e., we have to transpose v AND
conjugate all of the entries, then multiply the resulting row vector by the column vector w. This is

so that the dot product of a vector with itself equals the squared length. For example, if v =

[
3 + i
2

]
,

then

v · v = vT v =
[
3− i 2

] [3 + i
2

]
= (3− i)(3 + i) + (2)(2) = 10 + 4 = 14

Matrix multiplication with complex numbers: Multiplying matrices with complex numbers
works just the same as multiplying matrices with real numbers. Row reduction to compute matrix
inverses, kernel, etc also works the same.

3. Let A =

[
−3 −9
1 −3

]
. In this problem, we will solve the discrete dynamical system ~x(t + 1) = A~x(t)

with initial condition ~x(0) =

[
0
2

]
. Remember that we can derive ~x(t) = At~x(0), so we are essentially

trying to calculate At.

(a) Calculate the eigenvalues and eigenvectors of A. Use this to diagonalize A. (Your eigenvectors
should have complex entries!)

Solution: First, the eigenvalues. We compute the characteristic polynomial and then �nd the
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roots using the quadratic formula.

det(A− λI) = λ2 + 6λ+ 18 =⇒ λ = −3± 3i

Let λ1 = −3 + 3i and λ2 = −3− 3i. Eigenvectors are just computed in the same way.

ker(A− λ1I) = ker

[
−3i −9
1 −3i

]
= span

[
3i
1

]

ker(A− λ2I) = ker

[
3i −9
1 3i

]
= span

[
−3i
1

]
(Note that the eigenvector for λ2 is just the conjugate of the eigenvector for λ1.)

(b) Write down an expression for the matrix At in the form SDS−1 with D diagonal, and multiply
this by ~x(0) to get ~x(t). (Note, the multiplication is quicker if you �rst multiply S−1 by ~x(0),
instead of multiplying matrices.)

Solution: We can express A = SDS−1 with D =

[
−3 + 3i 0

0 −3− 3i

]
and S =

[
3i −3i
1 1

]
. We

need to calculate (−3+3i)t and (−3−3i)t. −3+3i has length 3
√
2 and angle 3π/4, while −3−3i

has length 3
√
2 and angle 5π/4 = −3π/4. Thus,

(−3 + 3i)t = (3
√
2)te3πit/4 = (3

√
2)t
(
cos

3πt

4
+ i sin

3πt

4

)

(−3− 3i)t = (3
√
2)te−3πit/4 = (3

√
2)t
(
cos

3πt

4
− i sin 3πt

4

)
One can compute via row reduction that S−1 = 1

6i

[
1 3i
−1 3i

]
. Thus,

~x(t) = SDtS−1
[
0
2

]
=

[
3i −3i
1 1

] [
(−3 + 3i)t 0

0 (−3− 3i)t

]
1

6i

[
1 3i
−1 3i

] [
0
2

]

= (3
√
2)t
[
3i −3i
1 1

] [
cos 3πt

4 + i sin 3πt
4 0

0 cos 3πt
4 − i sin

3πt
4

]
1

6i

[
1 3i
−1 3i

] [
0
2

]
Now proceed to multiply this out.

= (3
√
2)t
[
3i −3i
1 1

] [
cos 3πt

4 + i sin 3πt
4 0

0 cos 3πt
4 − i sin

3πt
4

] [
1
1

]

= (3
√
2)t
[
3i −3i
1 1

] [
cos 3πt

4 + i sin 3πt
4

cos 3πt
4 − i sin

3πt
4

]

= (3
√
2)t
[
−6 sin 3πt

4
2 cos 3πt

4

]
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(c) In words, how does ~x(t) behave as t increases? (Does it grow or shrink? Which quadrant will it
be in?)

Solution: As t increases, we can see that the quadrant will vary, because sin and cos oscillate:
in fact, it will be a counterclockwise spiral because the x-coordinate is − sin and the y-coordinate
is cos. As t→∞, the factor at the front grows without bound, and so ~x(t) spirals outwards.

Stability: The matrix A associated to the discrete dynamical system ~x(t+ 1) = A~x(t) is called

• asymptotically stable (or just stable) if ~x(t) → 0 as t → ∞, for every initial condition ~x(0).
Equivalently, if At converges to the zero matrix as t→∞.

• unstable if ~x(t) → ∞ as t → ∞ for some initial condition ~x(0). Equivalently, if some entry of
At diverges as t→∞.

• nonasymptotically stable (we will not call these systems stable) if ~x(t) stays bounded (but
does not necessarily go to 0) as t→∞, for every ~x(0).

We will not distinguish between unstable and nonasymptotically stable. Both of

these situations will be called `not stable'.

4. In each of the following situations, we have a discrete dynamical system whose matrix A is diagonaliz-
able with eigenvalues λ1, . . . , λn and associated nonzero eigenvectors ~v1, . . . , ~vn. Write down a formula
for ~x(t) in terms of the given initial condition ~x(0), and then explain what happens to ~x(t) as t→∞.

(a) λ1 = 0.7, λ2 = −0.3, ~x(0) = ~v1 + ~v2.

Solution: ~x(t) = (0.7)t~v1 + (−0.3)t~v2. As t→∞, ~x(t)→ 0. So this system is stable.

(b) λ1 = 2, λ2 = 1, ~x(0) = v1 − v2.

Solution: ~x(t) = 2t~v1+1t~v2. As t→∞, ~x(t) grows without bound in magnitude. So this system

is unstable.

(c) λ1 = 1 + i, λ2 = 1− i, λ3 = 1, ~x(0) = v1 + v2 + v3.

Solution: ~x(t) = (1+ i)t~v1 + (1− i)t~v2 +1t~v2 = (
√
2)teπit/4~v1 + (

√
2)te−πit/4~v2 +~v3. As t→∞,

this grows without bound in magnitude. Therefore, this system is unstable.

(d) λ1 = 1, λ3 = −1, ~x(0) = 2v1 + v2.

Solution: ~x(t) = 2(1)t~v1 + (−1)t~v2. As t increases, this �ips back and forth between 2~v1 + ~v2
and 2~v1 − ~v2. So this system is nonasymptotically stable - in particular, it is not stable.
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5. Can you give a simple criterion to determine whether a matrix A is asymptotically stable?

Solution: We have seen above that if A is diagonalizable, then A is asymptotically stable if and only if
all of its eigenvalues λ satisfy |λ| < 1. We will see in the next class that this holds for nondiagonalizable
matrices too. That is, A is asymptotically stable i� every eigenvalue λ satis�es |λ| < 1.

6. A mouse is in a maze with three rooms, with all three connected to each other. At time t = 0, the
mouse is in room 1, and at each step, the mouse walks to one of the two adjacent rooms, chosen
randomly. If ~x(t) is a vector containing the probabilities that the mouse is in each of the three rooms

at time t, then this de�nes the dynamical system ~x(t + 1) = A~x(t) with A =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 and

~x(0) =

10
0

 (why?). Solve for ~x(t), and determine what happens as t→∞.1

Solution: Calculate the characteristic polynomial:

det

−λ 1/2 1/2
1/2 −λ 1/2
1/2 1/2 −λ

 = −λ3 + 3

4
λ+ 1/4 = −(λ− 1)

(
λ2 + λ+

1

4

)
= −(λ− 1)(λ+ 1/2)2

so we have eigenvalues 1,−1/2,−1/2. Calculating the eigenvectors,

ker

−1 1/2 1/2
1/2 −1 1/2
1/2 1/2 −1

 = span

11
1



ker

1/2 1/2 1/2
1/2 1/2 1/2
1/2 1/2 1/2

 = span

 1
−1
0

 ,
 1

0
−1


Now to calculate ~x(t), we can write A = SDS−1 with D =

1 0 0
0 1/2 0
0 0 1/2

 and S =

1 1 1
1 −1 0
1 0 −1

,
and exponentiate in the usual way, i.e. calculate

~x(t) = At~x(0) =

1 1 1
1 −1 0
1 0 −1

1 0 0
0 (1/2)t 0
0 0 (1/2)t

1 1 1
1 −1 0
1 0 −1

−1 10
0


Instead, I'm going to describe a second (equivalent) way of doing it. Write ~x(0) as a linear combination
of the eigenvectors of A that we found.

~x(0) =

10
0

 =
1

3

11
1

+
1

3

 1
−1
0

+
1

3

 1
0
−1


1This is an example of a random walk, which is a special case of a Markov process, from probability. These discrete dynamical

systems have applications all over the place. The Perron-Frobenius theorem gives conditions for such a system to be stable.
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Now apply At: we know how At acts on each of these eigenvectors.

At~x(0) =
1

3

11
1

+ (−1/2)t 1
3

 1
−1
0

+ (−1/2)t 1
3

 1
0
−1



=
1

3

1 + 2(−1/2)t
1− (−1/2)t
1− (−1/2)t


As t → ∞, this converges to

1/31/3
1/3

. In other words, after the mouse has been wandering around in

this maze for a long time, we should expect the mouse to be in each room with probability 1/3. This
makes sense!

Note: We did this analysis with the example of a simple maze of three rooms with any two connected,
and all transition probabilities equal to 1/2. But the same method works for ANY sort of random
walk, or in general, any Markov chain. This, for example, is the theory underlying the Google Pagerank
algorithm, among many, many other applications.
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