Math 21b, March 28: Complex Eigenvalues and Stability

1. Calculate the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.

Complex numbers: A complex number is a number of the form a + bi, where $i = \sqrt{-1}$. a is the real part and bi is the *imaginary part*. Addition of complex numbers is done componentwise, and multiplication is done using the fact that $i^2 = -1$.

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$
 $(a+bi)(c+di) = (ac-bd) + (ad+bc)i$

Euler's formula: Using Taylor series, one can show that $e^{i\theta} = \cos \theta + i \sin \theta$. This provides us a great tool to multiply complex numbers by using *polar coordinates*, i.e. expressing a complex number as $re^{i\theta} = r\cos \theta + ir\sin \theta$, where r is the *length* of the complex number. I.e., we use the formula

$$(r_1e^{i\theta_1})(r_2e^{i\theta_2}) = r_1r_2e^{i(\theta_1+\theta_2)}$$

- 2. In this question, we'll use polar coordinates to calculate $(1+i)^{10}$.
 - (a) Write the complex number 1 + i in polar coordinates $r^{i\theta}$ by finding its length r and its angle θ .

(b) Use this form to calculate $(1 + i)^{10}$. Can you find a geometric description of what multiplication by 1 + i does in the complex plane?

Complex conjugates: For any complex number a + bi, its *conjugate* is the complex number a - bi. In polar coordinates, the conjugate of $re^{i\theta}$ is $re^{-i\theta}$. Complex eigenvalues and eigenvectors of matrices come in *conjugate pairs*.

- 3. Let $A = \begin{bmatrix} -3 & -9 \\ 1 & -3 \end{bmatrix}$. In this problem, we will solve the discrete dynamical system $\vec{x}(t+1) = A\vec{x}(t)$ with initial condition $\vec{x}(0) = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$. Remember that we can derive $\vec{x}(t) = A^t \vec{x}(0)$, so we are essentially trying to calculate A^t .
 - (a) Calculate the eigenvalues and eigenvectors of A. Use this to diagonalize A. (Your eigenvectors should have complex entries!)

(b) Write down an expression for the matrix A^t in the form SDS^{-1} with D diagonal, and multiply this by $\vec{x}(0)$ to get $\vec{x}(t)$. (Note, the multiplication is quicker if you first multiply S^{-1} by $\vec{x}(0)$, instead of multiplying matrices.)

(c) In words, how does $\vec{x}(t)$ behave as t increases? (Does it grow or shrink? Which quadrant will it be in?)

Stability: The matrix A associated to the discrete dynamical system $\vec{x}(t+1) = A\vec{x}(t)$ is called

- asymptotically stable if $\vec{x}(t) \to 0$ as $t \to \infty$, for every initial condition $\vec{x}(0)$.
- **unstable** if $\vec{x}(t) \to \infty$ as $t \to \infty$ for some initial condition $\vec{x}(0)$.
- nonasymptotically stable if $\vec{x}(t)$ stays bounded (but does not necessarily go to 0) as $t \to \infty$, for every $\vec{x}(0)$.
- 4. In each of the following situations, we have a discrete dynamical system whose matrix A is diagonalizable with eigenvalues $\lambda_1, \ldots, \lambda_n$ and associated nonzero eigenvectors v_1, \ldots, v_n . Write down a formula for $\vec{x}(t)$ in terms of the given initial condition $\vec{x}(0)$, and then explain what happens to $\vec{x}(t)$ as $t \to \infty$.

(a)
$$\lambda_1 = 0.7, \lambda_2 = -0.3, \vec{x}(0) = v_1 + v_2.$$

(b) $\lambda_1 = 2, \lambda_2 = 1, \vec{x}(0) = v_1 - v_2.$

(c)
$$\lambda_1 = 1 + i, \lambda_2 = 1 - i, \lambda_3 = 1, \vec{x}(0) = v_1 + v_2 + v_3.$$

(d) $\lambda_1 = 1, \lambda_3 = -1, \vec{x}(0) = 2v_1 + v_2.$

5. Can you give a simple criterion to determine whether a matrix A is asymptotically stable?

6. A mouse is in a maze with three rooms, with all three connected to each other. At time t = 0, the mouse is in room 1, and at each step, the mouse walks to one of the two adjacent rooms, chosen randomly. If $\vec{x}(t)$ is a vector containing the probabilities that the mouse is in each of the three rooms

at time t, then this defines the dynamical system $\vec{x}(t+1) = A\vec{x}(t)$ with $A = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{bmatrix}$ and

$$\vec{x}(0) = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
 (why?). Solve for $\vec{x}(t)$, and determine what happens as $t \to \infty$.¹

 $^{^{1}}$ This is an example of a *random walk*, which is a special case of a *Markov process*, from probability. These discrete dynamical systems have applications all over the place. The Perron-Frobenius theorem gives conditions for such a system to be stable.