Math 21b, March 23: Diagonalization

Diagonalizable matrices: An $n \times n$ matrix A is called diagonalizable if it is similar to a diagonal matrix, i.e. if there are $n \times n$ matrices S and D such that D is a diagonal matrix, and

$$
A=S D S^{-1}
$$

The entries $\lambda_{1}, \ldots, \lambda_{n}$ of D are the eigenvalues of A, and the columns $\vec{v}_{1}, \ldots, \vec{v}_{n}$ of S are the eigenvectors of A. Therefore, a matrix is diagonalizable if and only if it has an eigenbasis.

1. (Warmup) True or false:
(a) If A is similar to B, then A^{2} is similar to B^{2}.
(b) If A^{2} is similar to B^{2}, then A is similar to B.
(c) If A is diagonalizable, then so is A^{100}.
2. Suppose $\mathfrak{B}=\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right)$ is a basis of \mathbb{R}^{3}. Let A be a 3×3 matrix with eigenvectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ with respective eigenvalues $3,2,-2$.
(a) Find the \mathfrak{B}-coordinates of A.
(b) How would you write a closed formula for A^{100} ?
3. Let $A=\left[\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3\end{array}\right]$.
(a) Compute its eigenvalues, and give their algebraic multiplicity.
(b) Compute the eigenvectors. Is the matrix diagonalizable?
4. Consider the 2×2 rotation dilation matrix $A=\left[\begin{array}{cc}3 & -4 \\ 4 & 3\end{array}\right]$.
(a) Compute its eigenvalues.
(b) Are there eigenvectors? Why or why not?
5. True or false:
(a) If A and B have the same characteristic polynomial, then they are similar to each other. (Hint: think about problem 3 above.)
(b) If A and B are similar to each other, then $A+2 I$ and $B+2 I$ are similar to each other.
(c) If A is a 3×3 matrix whose characteristic polynomial has roots $3,3,5$, then the matrix $A-5 I_{2}$ has rank two and the matrix $A-3 I_{2}$ has rank one.
6. Find the eigenvalues and eigenvectors of $\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 2 & 2\end{array}\right]$. (There is a trick to doing this without computing the characteristic polynomial.)
7. In each part, decide whether there is a matrix with the given properties. If so, give an example; if not, explain why.
(a) A diagonalizable 3×3 matrix which has 2 as an eigenvalue, trace 7 , and determinant 12 .
(b) A nondiagonalizable 3×3 matrix which has 2 as an eigenvalue, trace 7, and determinant 12 .
8. Let A be a noninvertible $n \times n$ matrix. Explain why 0 must be an eigenvalue, and find its geometric multiplicity in terms of $\operatorname{rank}(A)$.
9. In this question, you will think about why eigenvectors with different eigenvalues must be linearly independent. Suppose that A is a 10×10 matrix and that $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are eigenvectors of A with eigenvalues $5,7,13$, respectively.
(a) Explain why \vec{v}_{2} cannot be in $\operatorname{span}\left(\vec{v}_{1}\right)$.
(b) Explain why \vec{v}_{3} cannot be in $\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}\right)$.
