
MATH 21B, MARCH 9: DETERMINANTS - HOW TO COMPUTE THEM,

AND WHAT THEY MEAN

Some properties of the determinant:

• det(A) = det(AT )
• A is invertible ⇐⇒ det(A) 6= 0 ⇐⇒ A's rows (and columns) are linearly independent
• det(AB) = det(A) det(B). (see Question 7)
• det(In) = 1, det(A−1) = 1

det(A) , det(A
k) = det(A)k

Laplace Expansion: We can go along the entries in the �rst column of A and get an
expression for the determinant

det(A) = A11 det(B11)−A21 det(B21) + . . .+ (−1)n−1An1 det(Bn1)

where Bi1 refers to the (n−1)×(n−1) matrix formed by removing the i-th row and �rst column
of A. The same can be done with the entries in any column - if you do this starting with the
r-th column instead, then you need to multiply by (−1)r−1. Similarly, this can be done with
any row.

(1) Compute the determinants using Laplace expansion.

(a)

1 0 3
0 −1 4
2 1 −2


Solution: Expanding along the �rst row,

det

1 0 3
0 −1 4
2 1 −2

 = 1det

[
−1 4
1 −2

]
− 0 det

[
0 4
2 −2

]
+ 3det

[
0 −1
2 1

]

= (2− 4) + 3(0 + 2) = 4

(b)


1 2 0 −1
0 7 1 0
1 2 4 1
5 10 2 5


Solution: Expanding along the second row,

= −0 det

 2 0 −1
2 4 1
10 2 5

+ 7det

1 0 −1
1 4 1
5 2 5

− 1 det

1 2 −1
1 2 1
5 10 5

+ 0det

1 2 0
1 2 4
5 10 2


The �rst and fourth terms are zero. The third determinant is zero, because its sec-
ond and third rows are multiples of one another (and therefore the rows are linearly
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dependent). Thus, our determinant equals

= 7det

1 0 −1
1 4 1
5 2 5

 = 7(1 · 4 · 5− 1 · 1 · 2− 1 · 1 · 2 + 1 · 4 · 5) = 252

(2) True or false: the function T : R4 → R de�ned by T



x1
x2
x3
x4


 = det


x1 x2 x3 x4
3 −1 6 0
2 3 0 5
−2 7 4 1

 is

linear.

Solution: True. If we Laplace expand along the �rst row, this determinant equals

= x1 det

−1 6 0
3 0 5
7 4 1

− x2 det

 3 6 0
2 0 5
−2 4 1

+ x3 det

 3 −1 0
2 3 5
−2 7 1

− x4 det

 3 −1 6
2 3 0
−2 7 4



= 212x1 + 132x2 − 84x3 − 164x4 =
[
212 132 −84 164

] 
x1
x2
x3
x4



Some geometry: The determinant of the n× n matrix A =

 | · · · |
~v1 · · · ~vn
| · · · |

 is equal

to the absolute value of the n-dimensional volume of the fundamental parallelepiped
in Rn whose edges are the vectors ~v1, . . . , ~vn. In particular, if the columns of A are
linearly dependent, then this parallelepiped is degenerate and det(A) = 0.

Since det(A) = det(AT ), this is the same as the corresponding volume of the paral-
lelepiped formed by the row vectors of A.

(3) Let A be an orthogonal matrix. What are the possible values for det(A)?

Solution: The columns vectors of A are orthonormal, i.e. they are mutually perpendic-
ular and all have length 1. Thus, the fundamental parallelepiped they form has volume 1.

So det(A) = ±1 .

(4) Let A =

2 4 6
1 2 1
1 3 3

.
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(a) Row-reduce A, but keep track of each row operation that you used.

Solution: Using standard row-reduction techniques,

2 4 6
1 2 1
1 3 3

 ×(1/2)→

1 2 3
1 2 1
1 3 3

 +→

1 2 3
0 0 −2
0 1 0

 s→

1 2 3
0 1 0
0 0 −2

 ×(−1/2)→

1 2 3
0 1 0
0 0 1

 +→

1 0 0
0 1 0
0 0 1


I used + to denote each time I added a multiple of one row to another, × each time I
scaled a row by a constant, and s each time I swapped two rows.

(b) By interpreting each intermediate matrix as a parallelepiped generated by row vectors,
how does the volume change with each step?

Solution: Intuitively,
• Scaling a row by a constant c will accordingly stretch (or shrink) the parallelepiped
by a factor of c, and therefore will multiply the volume by c.
• Swapping two vectors doesn't change the parallelepiped, and therefore doesn't
change the volume.
• Adding one row to another skews/shears the parallelepiped which does not change
the volume (think in two dimensions: base times height).

(c) Correspondingly, can you calculate how the determinant changed at each step? Can
you explain this using the linearity from problem 2?

Solution: If we calculate the determinants at every step above, we �nd they are

4
×(1/2)→ 2

+→ 2
s→ −2 ×(−1/2)→ 1

+→ 1

This suggests that scaling a row by c multiplies the determinant by c, swapping two
rows multiplies the determinant by −1, and adding one row to another doesn't change
the determinant.
The �rst of these properties (scaling a row) follows from the linearity property in
problem 2. Since the determinant of an n× n matrix

T (~x) = det


− ~x −
− ~v2 −

...
− ~vn −


is a linear function of the �rst row ~x (thinking of ~x as a variable vector and the rest
of the rows as �xed vectors), it follows by de�nition that by a scalar c will scale the
determinant by c, i.e. T (c~x) = cT (~x). A similar argument holds when `�rst row' is
replaced by `k-th row' for any k.
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The third property (adding one row to another) also follows from the linearity property.
For example, if we add the second row ~v2 to the �rst row, we get

T (~x+ ~v2) = T (~x) + T (~v2) = det


− ~x −
− ~v2 −

...
− ~vn −

+ det


− ~v2 −
− ~v2 −

...
− ~vn −


The second determinant is zero because two rows are equal, and therefore, T (~x+~v2) =
T (~x), i.e. the determinant did not change.
The second property (swapping two rows) is not a consequence of the linearity from
problem 2. However, we can prove it by simply expanding out the determinant by
de�nition as a sum over all n! permutation patterns, and notice that when we swap
two rows in a permutation pattern, it either removes one upcrossing, or adds one
new upcrossing - in either case, it �ips the sign of the term corresponding to that
permutation pattern. The consequence is that the determinant changes in sign.

Determinants and Row Reduction: Each row operation has a particular e�ect
on the determinant.
• Multiplying a row or column by c, multiplies det(A) by c.
• Swapping two rows or two columns multiplies det(A) by −1.
• Adding a multiple of one row to another row (or of one column to another column)
doesn't change det(A).

Therefore, during the row reduction of a square matrix A, if m swapping operations
occurred and rows were scaled by factors c1, . . . , ck, then

det(A) =
(−1)m

c1 · · · ck
det(rref(A))

(5) Calculate the determinants using the easiest method you can. (Permutations, Laplace ex-
pansion, or Row reduction.)

(a)


1 3 2 0
3 2 0 4
0 0 3 1
0 0 1 0


Solution: Laplace expand along the bottom row, then again along the bottom row of
the new matrix.

= −1 det

1 3 0
3 2 4
0 0 1

 = −1 det
[
1 3
3 2

]
= 7

(b)


1 1 1 1
1 2 1 1
1 1 3 1
1 1 1 4


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Solution: Row reduce
1 1 1 1
1 2 1 1
1 1 3 1
1 1 1 4

 +→


1 1 1 1
0 1 0 0
0 0 2 0
0 0 0 3

 ×(1/6)→


1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 +→ I4

so the original determinant is 6 .

(c)


0 1 0 0 0
0 0 2 0 0
3 0 0 0 0
0 0 0 0 4
0 0 0 5 0


3

Solution: There is only one permutation to worry about in the matrix shown (before
being cubed), and it has three upcrossings (from 3 − 1, 3 − 2, 5 − 4). Therefore, the
matrix shown has determinant (−1)35! = −120, and so after we cube this matrix, it

has determinant −1203 = −1728000 .

(d)


0 4 3 1 0
0 0 2 3 1
0 2 4 3 0
3 1 0 0 0
0 1 0 0 0


Solution: Laplace expand along the bottom row, then the bottom row again, then the
third column.

= −1 det


0 3 1 0
0 2 3 1
0 4 3 0
3 0 0 0

 = 3det

3 1 0
2 3 1
4 3 0

 = −3 det
[
3 1
4 3

]
= −15

(6) (a) Find the determinant of the upper triangular matrix


2 7 10 0 3
0 −7 −10 −9 7
0 0 8 3 −10
0 0 0 −3 −5
0 0 0 0 5

.
Solution: We can Laplace expand along the bottom row repeatedly. Or, we may notice
that the only permutation pattern which involves none of the zeroes below the diagonal,
is the one going along the diagonal. Either way, we will get that the determinant is

(2)(−7)(8)(−3)(5) = 1680 .

(b) How would you �nd the determinant of any upper triangular matrix?

Solution: The determinant of any upper triangular matrix can be found the same way.
Its determinant will be the product of the diagonal entries.
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(c) What about the lower triangular matrix


2 0 0 0 0
7 −7 0 0 0
10 −10 8 0 0
0 −9 3 −3 0
3 7 −10 −5 5

?

Solution: Exactly the same.

(7) In this problem, we will prove that det(AB) = det(A) det(B).
(a) Consider the augmented matrix [A|AB]. Row-reduce until you have [In|?] so that the

matrix on the left side is In. What matrix do you have on the right side? (Hint: when
you row-reduced [A|b], you got [In|A−1b].)

Solution: Performing this row reduction gives us A−1AB on the right side, i.e. B.
One way to see this is, if the columns of B are ~v1, . . . , ~vn, then the columns of AB
are A~v1, . . . , A~vn, and so we are concurrently reducing each [A|A~vi]→ [In|~vi]. Another
way to see it, is that each row operation corresponds to multiplication on the left by a

matrix. As a concrete example, for 3× 3 matrices,

• Scaling the third row of a matrix by c corresponds to M 7→

1 0 0
0 1 0
0 0 c

M .

• Swapping the second and third rows corresponds to M 7→

1 0 0
0 0 1
0 1 0

M .

• Adding the second row to the �rst corresponds to M 7→

1 1 0
0 1 0
0 0 1

M .

The sequence of row operations which takes A to In corresponds to multiplying on the
left by A−1. Therefore, this sequence of operations sends AB 7→ B.

(b) How much did the operations you performed scale the determinant of the matrix on
the left? How about the matrix on the right?

Solution: This process changed the determinant on the left from det(A) to 1, so it
multiplied the determinant by 1/det(A). We did the same row operations on both
sides, so it did the same thing on the right. I.e., det(B) = det(AB)/ det(A), which

gives the product formula det(AB) = det(A) det(B) .
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