MATH 21B, MARCH 9: DETERMINANTS - HOW TO COMPUTE THEM, AND WHAT THEY MEAN

Some properties of the determinant:

- $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
- A is invertible $\Longleftrightarrow \operatorname{det}(A) \neq 0 \Longleftrightarrow A$'s rows (and columns) are linearly independent
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. (see Question 7)
- $\operatorname{det}\left(I_{n}\right)=1, \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}, \operatorname{det}\left(A^{k}\right)=\operatorname{det}(A)^{k}$

Laplace Expansion: We can go along the entries in the first column of A and get an expression for the determinant

$$
\operatorname{det}(A)=A_{11} \operatorname{det}\left(B_{11}\right)-A_{21} \operatorname{det}\left(B_{21}\right)+\ldots+(-1)^{n-1} A_{n 1} \operatorname{det}\left(B_{n 1}\right)
$$

where $B_{i 1}$ refers to the $(n-1) \times(n-1)$ matrix formed by removing the i-th row and first column of A. The same can be done with the entries in any column - if you do this starting with the r-th column instead, then you need to multiply by $(-1)^{r-1}$. Similarly, this can be done with any row.
(1) Compute the determinants using Laplace expansion.
(a) $\left[\begin{array}{ccc}1 & 0 & 3 \\ 0 & -1 & 4 \\ 2 & 1 & -2\end{array}\right]$
(b) $\left[\begin{array}{cccc}1 & 2 & 0 & -1 \\ 0 & 7 & 1 & 0 \\ 1 & 2 & 4 & 1 \\ 5 & 10 & 2 & 5\end{array}\right]$
(2) True or false: the function $T: \mathbb{R}^{4} \rightarrow \mathbb{R}$ defined by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]\right)=\operatorname{det}\left[\begin{array}{cccc}x_{1} & x_{2} & x_{3} & x_{4} \\ 3 & -1 & 6 & 0 \\ 2 & 3 & 0 & 5 \\ -2 & 7 & 4 & 1\end{array}\right]$ is linear.

Some geometry: The determinant of the $n \times n$ matrix $A=\left[\begin{array}{ccc}\mid & \cdots & \mid \\ \vec{v}_{1} & \cdots & \vec{v}_{n} \\ \mid & \cdots & \mid\end{array}\right]$ is equal to the absolute value of the n-dimensional volume of the fundamental parallelepiped in \mathbb{R}^{n} whose edges are the vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$. In particular, if the columns of A are linearly dependent, then this parallelepiped is degenerate and $\operatorname{det}(A)=0$.
Since $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$, this is the same as the corresponding volume of the parallelepiped formed by the row vectors of A.
(3) Let A be an orthogonal matrix. What are the possible values for $\operatorname{det}(A)$?
(4) Let $A=\left[\begin{array}{lll}2 & 4 & 6 \\ 1 & 2 & 1 \\ 1 & 3 & 3\end{array}\right]$.
(a) Row-reduce \bar{A}, but keep track of each row operation that you used.
(b) By interpreting each intermediate matrix as a parallelepiped generated by row vectors, how does the volume change with each step?
(c) Correspondingly, can you calculate how the determinant changed at each step? Can you explain this using the linearity from problem 2?

Determinants and Row Reduction: Each row operation has a particular effect on the determinant.

- Multiplying a row or column by c, multiplies $\operatorname{det}(A)$ by c.
- Swapping two rows or two columns multiplies $\operatorname{det}(A)$ by -1 .
- Adding a multiple of one row to another row (or of one column to another column) doesn't change $\operatorname{det}(A)$.
Therefore, during the row reduction of a square matrix A, if m swapping operations occurred and rows were scaled by factors c_{1}, \ldots, c_{k}, then

$$
\operatorname{det}(A)=\frac{(-1)^{m}}{c_{1} \cdots c_{k}} \operatorname{det}(\operatorname{rref}(A))
$$

(5) Calculate the determinants using the easiest method you can. (Permutations, Laplace expansion, or Row reduction.)
(a) $\left[\begin{array}{llll}1 & 3 & 2 & 0 \\ 3 & 2 & 0 & 4 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
(c) $\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 5 & 0\end{array}\right]^{3}$
(b) $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 4\end{array}\right]$
(d) $\left[\begin{array}{lllll}0 & 4 & 3 & 1 & 0 \\ 0 & 0 & 2 & 3 & 1 \\ 0 & 2 & 4 & 3 & 0 \\ 3 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right]$
(6) (a) Find the determinant of the upper triangular matrix $\left[\begin{array}{ccccc}2 & 7 & 10 & 0 & 3 \\ 0 & -7 & -10 & -9 & 7 \\ 0 & 0 & 8 & 3 & -10 \\ 0 & 0 & 0 & -3 & -5 \\ 0 & 0 & 0 & 0 & 5\end{array}\right]$.
(b) How would you find the determinant of any upper triangular matrix?
(c) What about the lower triangular matrix $\left[\begin{array}{ccccc}2 & 0 & 0 & 0 & 0 \\ 7 & -7 & 0 & 0 & 0 \\ 10 & -10 & 8 & 0 & 0 \\ 0 & -9 & 3 & -3 & 0 \\ 3 & 7 & -10 & -5 & 5\end{array}\right]$?
(7) In this problem, we will prove that $\operatorname{det}(A B)=\operatorname{det}(A)=\operatorname{det}(B)$.
(a) Consider the augmented matrix $[A \mid A B]$. Row-reduce until you have $\left[I_{n} \mid\right.$?] so that the matrix on the left side is I_{n}. What matrix do you have on the right side? (Hint: when you row-reduced $[A \mid b]$, you got $\left[I_{n} \mid A^{-1} b\right]$.)
(b) How much did the operations you performed scale the determinant of the matrix on the left? How about the matrix on the right?

