MATH 21B, MARCH 9: DETERMINANTS - HOW TO COMPUTE THEM, AND WHAT THEY MEAN

Some properties of the determinant:

- $\det(A) = \det(A^T)$
- A is invertible $\iff \det(A) \neq 0 \iff A$'s rows (and columns) are linearly independent
- $\det(AB) = \det(A) \det(B)$. (see Question 7) $\det(I_n) = 1$, $\det(A^{-1}) = \frac{1}{\det(A)}$, $\det(A^k) = \det(A)^k$

Laplace Expansion: We can go along the entries in the first column of A and get an expression for the determinant

 $\det(A) = A_{11} \det(B_{11}) - A_{21} \det(B_{21}) + \ldots + (-1)^{n-1} A_{n1} \det(B_{n1})$

where B_{i1} refers to the $(n-1) \times (n-1)$ matrix formed by removing the *i*-th row and first column of A. The same can be done with the entries in any column - if you do this starting with the r-th column instead, then you need to multiply by $(-1)^{r-1}$. Similarly, this can be done with any row.

(1) Compute the determinants using Laplace expansion.

	Г1	0	n ٦		1	2	0	-1	
(a)		0		(1)	0	7	1	0	
	$\begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}$	4	4 (b)	1	2	4	1		
	L^2	1	-2		5	10	2	$\begin{array}{c} -1 \\ 0 \\ 1 \\ 5 \end{array}$	

(2) True or false: the function $T : \mathbb{R}^4 \to \mathbb{R}$ defined by $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \right) = \det \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ 3 & -1 & 6 & 0 \\ 2 & 3 & 0 & 5 \\ -2 & 7 & 4 & 1 \end{bmatrix}$ is linear.

Some geometry: The determinant of the $n \times n$ matrix $A = \begin{bmatrix} | & \cdots & | \\ \vec{v_1} & \cdots & \vec{v_n} \\ | & \cdots & | \end{bmatrix}$ is equal to the *absolute value* of the *n*-dimensional volume of the **fundamental parallelepiped** in \mathbb{R}^n whose edges are the vectors $\vec{v_1}, \ldots, \vec{v_n}$. In particular, if the columns of A are *linearly dependent*, then this parallelepiped is degenerate and $\det(A) = 0$. Since $\det(A) = \det(A^T)$, this is the same as the corresponding volume of the paral-

lelepiped formed by the row vectors of A.

(3) Let A be an orthogonal matrix. What are the possible values for det(A)?

(4) Let
$$A = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 2 & 1 \\ 1 & 3 & 3 \end{bmatrix}$$
.
(a) Row-reduce \overline{A} , but keep track of each row operation that you used.

(b) By interpreting each intermediate matrix as a parallelepiped generated by row vectors, how does the **volume** change with each step?

(c) Correspondingly, can you calculate how the **determinant** changed at each step? Can you explain this using the **linearity** from problem 2?

Determinants and Row Reduction: Each row operation has a particular effect on the determinant.

- Multiplying a row or column by c, multiplies det(A) by c.
- Swapping two rows or two columns multiplies det(A) by -1.
- Adding a multiple of one row to another row (or of one column to another column) doesn't change det(A).

Therefore, during the row reduction of a square matrix A, if m swapping operations occurred and rows were scaled by factors c_1, \ldots, c_k , then

$$\det(A) = \frac{(-1)^m}{c_1 \cdots c_k} \det(\operatorname{rref}(A))$$

(5) Calculate the determinants using the easiest method you can. (Permutations, Laplace expansion, or Row reduction.)

	[1	3	2	0]		Го	1	0	0	$0]^{3}$
(a)	3	2	0	4		0	0	2	0	0
	0	0	3	1	(c)	3	0	0	0	0
	0	0	1	0		0	0	0	0	4
					(c)	0	0	0	5	0

(b)
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 4 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 0 & 4 & 3 & 1 & 0 \\ 0 & 0 & 2 & 3 & 1 \\ 0 & 2 & 4 & 3 & 0 \\ 3 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

	(a) Find the determinant of the upper triangular matrix	2	7	10	0	3]	
		0	-7	-10	-9	7	
(6)	(a) Find the determinant of the upper triangular matrix	0	0	8	3	-10	
		0	0	0	-3	-5	
		0	0	0	0	5	

(b) How would you find the determinant of any upper triangular matrix?

(c) What about the lower triangular matrix	$\begin{bmatrix} 2\\7\\10\\0 \end{bmatrix}$	$0 \\ -7 \\ -10 \\ -9$	$egin{array}{c} 0 \\ 0 \\ 8 \\ 3 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ -3 \end{array}$	0 0 0 0	?
	$\begin{vmatrix} 0\\ 3 \end{vmatrix}$	$-9 \\ 7$	3 - 10	$-3 \\ -5$	$\begin{array}{c} 0 \\ 5 \end{array}$	

(7) In this problem, we will prove that det(AB) = det(A) = det(B).

(a) Consider the augmented matrix [A|AB]. Row-reduce until you have $[I_n|?]$ so that the matrix on the left side is I_n . What matrix do you have on the right side? (Hint: when you row-reduced [A|b], you got $[I_n|A^{-1}b]$.)

(b) How much did the operations you performed scale the determinant of the matrix on the left? How about the matrix on the right?