MATH 21B, MARCH 7: LINEAR LEAST SQUARES, DATA FITTING, AND AN INTRODUCTION TO DETERMINANTS

(1) We want to find a quadratic $f(x)=c_{2} x^{2}+c_{1} x+c_{0}$ such that $f(-1)=1, f(0)=0, f(1)=2$, and $f(2)=5$. Write down a matrix equation to solve for $\vec{x}=\left[\begin{array}{l}c_{2} \\ c_{1} \\ c_{0}\end{array}\right]$.

Solution: This gives us the system of equations

$$
\begin{aligned}
c_{2}(-1)^{2}+c_{1}(-1)+c_{0} & =1 \\
c_{2}(0)^{2}+c_{1}(0)+c_{0} & =0 \\
c_{2}(1)^{2}+c_{1}(1)+c_{0} & =2 \\
c_{2}(2)^{2}+c_{1}(2)+c_{0} & =5
\end{aligned}
$$

which can be written using the matrix equation

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
4 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
c_{2} \\
c_{1} \\
c_{0}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
2 \\
5
\end{array}\right]
$$

Bonus: I'm going to demonstrate finding the least squares solution to this system, using the material in the next two pages of this sheet. We've already found that $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1\end{array}\right]$, so $A^{T}=\left[\begin{array}{cccc}1 & 0 & 1 & 4 \\ -1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1\end{array}\right]$. Multiplying both sides of $A \vec{x}=\vec{b}$ on the left by A^{T} gives the normal equation

$$
\left[\begin{array}{ccc}
18 & 8 & 6 \\
8 & 6 & 2 \\
6 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
c_{2} \\
c_{1} \\
c_{0}
\end{array}\right]=\left[\begin{array}{c}
23 \\
11 \\
8
\end{array}\right]
$$

Solving by row-reduction gives us $c_{0}=3 / 10, c_{1}=2 / 5, c_{2}=1$. Thus, the best-fit quadratic is $f(t)=t^{2}+\frac{2}{5} t+\frac{3}{10}$. You can check that $f(-1)=0.9, f(0)=0.3, f(1)=1.7, f(2)=5.1$, a pretty good fit! This means that $\left[\begin{array}{l}0.9 \\ 0.3 \\ 1.7 \\ 5.1\end{array}\right]$ is the projection of $\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 5\end{array}\right]$ onto the image of A.

Least Square Solutions: Let $A \vec{x}=\vec{b}$ be an inconsistent system of linear equations. A vector \vec{x}^{*} which makes $A \vec{x}^{*}$ as close as possible to \vec{b} is called a least square solution. Such vectors \vec{x}^{*} are solutions to the consistent system

$$
A \vec{x}=\operatorname{proj}_{i m(A)}(\vec{b})=\vec{b}-\vec{b}^{\perp}
$$

(2) Let \vec{b}^{\perp} be the part of \vec{b} orthogonal to $\operatorname{im}(A)$.
(a) Explain why $A^{T} \vec{b}^{\perp}=0$.

Solution: \vec{b}^{\perp} is orthogonal to each column $\vec{v}_{1}, \ldots, \vec{v}_{n}$ of A, i.e. $\vec{v}_{i} \cdot \vec{b}^{\perp}=0$ for $i=$ $1, \ldots, n$. These are the row vectors of A^{T}. So it's clear that $A^{T} \vec{b}^{\perp}=0$.
(b) Using this fact, show that \vec{x}^{*} satisfies the equation $A^{T} A \vec{x}^{*}=A^{T} \vec{b}$. (The equation $A^{T} A \vec{x}=A^{T} \vec{b}$ is called the normal equation of $A \vec{x}=\vec{b}$.)
Solution: \vec{x}^{*} satisfies $A \vec{x}^{*}=\vec{b}-\vec{b}^{\perp}$. Apply A^{T} to both sides of this equation:

$$
A^{T} A \vec{x}^{*}=A^{T}\left(\vec{b}-\vec{b}^{\perp}\right)=A^{T} \vec{b}-A^{T} \vec{b}^{\perp}=A^{T} \vec{b}
$$

(c) Show that if A has linearly independent columns, then $\operatorname{ker}\left(A^{T} A\right)=0$ and therefore $A^{T} A$ is invertible. (Hint: If $A^{T} A \vec{w}=0$ for some vector $\overrightarrow{w v}$, then $A \vec{w}$ is orthogonal to all of the columns of A. But remember that $A \vec{w}$ is some linear combination of the columns of A.)

Solution: Suppose that \vec{w} is a nonzero vector that's in the kernel of $A^{T} A$, i.e. $A^{T} A \vec{w}=$ 0 . This means that the vector $A \vec{w}$ is orthogonal to the rows of A^{T}, i.e., it is orthogonal to the columns $\vec{v}_{1}, \ldots, \vec{v}_{n}$ of A, and thus lies outside of the span of $\vec{v}_{1}, \ldots, \vec{v}_{n}$. However, $A \vec{w}$ is a linear combination $w_{1} \vec{v}_{1}+\ldots+w_{n} \vec{v}_{n}$ of these columns! We have a contradiction, and therefore, no such vector \vec{w} can exist.

Solution written a different way: If $A^{T} A \vec{w}=0$, then $A \vec{w}$ is in the kernel of A^{T}. But $\operatorname{ker}\left(A^{T}\right)=\operatorname{im}(A)^{\perp}$. Therefore, $A \vec{w}$ is contained in both $\operatorname{im}(A)$ and $\operatorname{im}(A)^{\perp}$, and thus must be the zero vector.

Unique Least Square Solution: If the columns of A are linearly independent (i.e., $\operatorname{ker}(A)=0)$ then the least square solution is unique, and is given by the formula

$$
\vec{x}^{*}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

(3) Given a matrix A with linearly independent columns and a vector \vec{b} which is not on $\operatorname{im}(A)$, use least squares on the inconsistent system $A \vec{x}=\vec{b}$ to calculate a formula for $\operatorname{proj}_{\mathrm{im}(A)}(\vec{b})$. (Note: if the columns of A were orthonormal, then we have the formula $\operatorname{proj}_{\operatorname{im}(A)}(\vec{b})=A A^{T} \vec{b}$. The method above works even if the columns are not orthonormal.)

Solution: The least squares solution is $\vec{x}^{*}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}$. Since this satisfies $A \vec{x}^{*}=$ $\operatorname{proj}_{i m(A)}(\vec{b})$, we have the general formula

$$
\operatorname{proj}_{\operatorname{im}(A)}(\vec{b})=A\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

(4) We are going to use least squares to find the best linear fit $y=r x+s$ for the points $(1,0),(2,1)$, and $(3,3)$.
(a) Write down an inconsistent system $A \vec{x}=\vec{b}$ which solves for the coefficients $\vec{x}=\left[\begin{array}{l}r \\ s\end{array}\right]\left[\begin{array}{l}1\end{array}\right]$

Solution: As in the first problem on this worksheet, we have the (potentially inconsistent) matrix equation:

$$
\left[\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
r \\
s
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]
$$

(b) Compute $A^{T} A$ and its inverse.

Solution: By standard matrix multiplication/inversion,

$$
A^{T} A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1
\end{array}\right]=\left[\begin{array}{cc}
14 & 6 \\
6 & 3
\end{array}\right] \quad\left(A^{T} A\right)^{-1}=\left[\begin{array}{cc}
1 / 2 & -1 \\
-1 & 7 / 3
\end{array}\right]
$$

(c) Compute $\vec{x}^{*}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}$, the least square solution.

Solution:

$$
\vec{x}^{*}=\left[\begin{array}{cc}
1 / 2 & -1 \\
-1 & 7 / 3
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & -1 \\
-1 & 7 / 3
\end{array}\right]\left[\begin{array}{c}
11 \\
4
\end{array}\right]=\left[\begin{array}{c}
3 / 2 \\
-5 / 3
\end{array}\right]
$$

(d) What is the best-fit line? Try plugging in $x=1,2,3$.

Solution: The best-fit line is $y=\frac{3}{2} x-\frac{5}{3}$. This line passes through the points $(1,-1 / 6),(2,4 / 3),(3,17 / 6)$.

Determinant: The determinant of an $n \times n$ matrix A is defined as the sum

$$
\operatorname{det}(A)=\sum_{\pi}(-1)^{|\pi|} A_{1 \pi(1)} A_{2 \pi(2)} \cdots A_{n \pi(n)}
$$

where π varies over the n ! different permutations of the sequence $\{1,2, \ldots, n\}$ and $|\pi|$ is the number of up-crossings in the pattern given by π. The determinant satisfies the following properties (some will only be discussed next class):

- $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
- If A is upper triangular, then the determinant of A is the product of the diagonal entries.

[^0]- Scaling a row or column by c scales $\operatorname{det}(A)$ by c.
- A is invertible $\Longleftrightarrow \operatorname{det}(A) \neq 0$.
- Swapping two rows or two columns multiplies $\operatorname{det}(A)$ by -1 .
- Adding a multiple of one row (or column) to another row (or column) does not change $\operatorname{det}(A)$.
Laplace Expansion: We can go along the entries in the first column of A and get an expression for the determinant

$$
\operatorname{det}(A)=A_{11} \operatorname{det}\left(B_{11}\right)-A_{21} \operatorname{det}\left(B_{21}\right)+\ldots+(-1)^{n-1} A_{n 1} \operatorname{det}\left(B_{n 1}\right)
$$

where $B_{i 1}$ refers to the $(n-1) \times(n-1)$ matrix formed by removing the i-th row and first column of A. The same can be done with the entries in any other column (since we can swap columns and this introduces a sign) or any row (since we can transpose).
(5) Calculate the determinants.
(a) $\left[\begin{array}{ccc}1 & 0 & 3 \\ 0 & -1 & 4 \\ 2 & 1 & -2\end{array}\right]$.

Solution: $\operatorname{det}\left[\begin{array}{ccc}1 & 0 & 3 \\ 0 & -1 & 4 \\ 2 & 1 & -2\end{array}\right]=(1)(-1)(-2)+(0)(4)(2)+(3)(0)(1)-(1)(4)(1)-$
$(0)(0)(-2)-(3)(-1)(2)=2+0+0-4-0+6=4$.
(b) $\left[\begin{array}{cccc}1 & 2 & 0 & -1 \\ 0 & 7 & 1 & 0 \\ 1 & 2 & 4 & 1 \\ 5 & 10 & 2 & 5\end{array}\right]$

Solution: We swap the first and second row (which multiplies the determinant by -1), and then use Laplace expansion along the second row.
$-0 \operatorname{det}\left[\begin{array}{ccc}2 & 0 & -1 \\ 2 & 4 & 1 \\ 10 & 2 & 5\end{array}\right]+7 \operatorname{det}\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 4 & 1 \\ 5 & 2 & 5\end{array}\right]-1 \operatorname{det}\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & 2 & 1 \\ 5 & 10 & 5\end{array}\right]+0 \operatorname{det}\left[\begin{array}{ccc}1 & 2 & 0 \\ 1 & 2 & 4 \\ 5 & 10 & 2\end{array}\right]$
The first and last term are zero. The third determinant is zero because its second and third rows and multiples of each other. So our answer is

$$
7 \operatorname{det}\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 4 & 1 \\
5 & 2 & 5
\end{array}\right]=252
$$

(c) $\left[\begin{array}{ccc}1 & 2 & 4 \\ 2 & 4 & 8 \\ -1 & 5 & 3\end{array}\right]$

Solution: This has determinant 0 because the first and second rows are multiples of one another.
(d) $\left[\begin{array}{llll}0 & 0 & 0 & 2 \\ 1 & 2 & 4 & 5 \\ 0 & 7 & 2 & 9 \\ 0 & 0 & 6 & 4\end{array}\right]$

Solution: Using Laplace expansion,
$\operatorname{det}\left[\begin{array}{llll}0 & 0 & 0 & 2 \\ 1 & 2 & 4 & 5 \\ 0 & 7 & 2 & 9 \\ 0 & 0 & 6 & 4\end{array}\right]=-2 \operatorname{det}\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 7 & 2 \\ 0 & 0 & 6\end{array}\right]=(-2)(1)\left[\begin{array}{ll}7 & 2 \\ 0 & 6\end{array}\right]=(-2)(1)(7)(6)=\boxed{-84}$
(6) For what values of λ is the matrix $\left[\begin{array}{ccc}3-\lambda & -2 & 6 \\ 1 & -\lambda & 10 \\ 0 & 0 & 7-\lambda\end{array}\right]$ invertible?

Solution: Take the determinant by Laplace expanding along the bottom row:

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{ccc}
3-\lambda & -2 & 6 \\
1 & -\lambda & 10 \\
0 & 0 & 7-\lambda
\end{array}\right]=(7-\lambda) \operatorname{det}\left[\begin{array}{cc}
3-\lambda & -2 \\
1 & -\lambda
\end{array}\right]=(7-\lambda)((3-\lambda)(-\lambda)+2) \\
\left.=(7-\lambda) \lambda^{2}-3 \lambda+2\right)=(7-\lambda)(\lambda-2)(\lambda-1)
\end{gathered}
$$

This is nonzero (and thus the original matrix is invertible) as long as $\lambda \neq 7,2,1$.

[^0]: ${ }^{1}$ Notation confusion: The vector of coefficients, \vec{x}, is unrelated to the x-coordinate of the original question.

