MATH 21B, MARCH 7: LINEAR LEAST SQUARES, DATA FITTING, AND AN INTRODUCTION TO DETERMINANTS

(1) We want to find a quadratic $f(x) = c_2 x^2 + c_1 x + c_0$ such that f(-1) = 1, f(0) = 0, f(1) = 2,and f(2) = 5. Write down a matrix equation to solve for $\vec{x} = \begin{bmatrix} c_2 \\ c_1 \\ c_0 \end{bmatrix}$.

Least Square Solutions: Let $A\vec{x} = \vec{b}$ be an inconsistent system of linear equations. A vector \vec{x}^* which makes $A\vec{x}^*$ as close as possible to \vec{b} is called a *least square solution*. Such vectors \vec{x}^* are solutions to the consistent system

$$A\vec{x} = \operatorname{proj}_{\operatorname{im}(A)}(\vec{b}) = \vec{b} - \vec{b}^{\perp}$$

- (2) Let \vec{b}^{\perp} be the part of \vec{b} orthogonal to im(A). (a) Explain why $A^T \vec{b}^{\perp} = 0$.
 - (b) Using this fact, show that \vec{x}^* satisfies the equation $A^T A \vec{x}^* = A^T \vec{b}$. (The equation $A^T A \vec{x} = A^T \vec{b}$ is called the *normal equation* of $A \vec{x} = \vec{b}$.)
 - (c) Show that if A has linearly independent columns, then $\ker(A^T A) = 0$ and therefore $A^T A$ is invertible. (Hint: If $A^T A \vec{v} = 0$ for some vector \vec{v} , then $A \vec{v}$ is orthogonal to all of the columns of A. But remember that $A \vec{v}$ is some linear combination of the columns of A.)

Unique Least Square Solution: If the columns of A are linearly independent (i.e., ker(A) = 0) then the least square solution is unique, and is given by the formula

$$\vec{x}^* = (A^T A)^{-1} A^T \vec{b}$$

(3) Given a matrix A with linearly independent columns and a vector \vec{b} which is not on im(A), use least squares on the inconsistent system $A\vec{x} = \vec{b}$ to calculate a formula for $\operatorname{proj}_{\operatorname{im}(A)}(\vec{b})$. (Note: if the columns of A were orthonormal, then we have the formula $\operatorname{proj}_{\operatorname{im}(A)}(\vec{b}) = AA^T\vec{b}$. The method above works even if the columns are *not* orthonormal.)

- (4) We are going to use least squares to find the best linear fit y = rx + s for the points (1,0), (2,1), and (3,3).
 - (a) Write down an inconsistent system $A\vec{x} = \vec{b}$ which solves for the coefficients $\vec{x} = \begin{bmatrix} r \\ s \end{bmatrix}$.¹
 - (b) Compute $A^T A$ and its inverse.

- (c) Compute $\vec{x}^* = (A^T A)^{-1} A^T \vec{b}$, the least square solution.
- (d) What is the best-fit line? Try plugging in x = 1, 2, 3.

¹Confusing notation: The vector of coefficients, \vec{x} , is unrelated to the x-coordinate of the original question.

Determinant: The *determinant* of an $n \times n$ matrix A is defined as the sum

$$\det(A) = \sum_{\pi} (-1)^{|\pi|} A_{1\pi(1)} A_{2\pi(2)} \cdots A_{n\pi(n)}$$

where π varies over the *n*! different permutations of the sequence $\{1, 2, ..., n\}$ and $|\pi|$ is the number of *up-crossings* in the pattern given by π . The determinant satisfies the following properties (some will only be discussed next class):

- $\det(A) = \det(A^T)$
- If A is upper triangular, then the determinant of A is the product of the diagonal entries.
- Scaling a row or column by c scales det(A) by c.
- A is invertible $\iff \det(A) \neq 0$.
- Swapping two rows or two columns multiplies det(A) by -1.
- Adding a multiple of one row (or column) to another row (or column) does not change det(A).

Laplace Expansion: We can go along the entries in the first column of A and get an expression for the determinant

$$\det(A) = A_{11} \det(B_{11}) - A_{21} \det(B_{21}) + \ldots + (-1)^{n-1} A_{n1} \det(B_{n1})$$

where B_{i1} refers to the $(n-1) \times (n-1)$ matrix formed by removing the *i*-th row and first column of A. The same can be done with the entries in any other column (since we can swap columns and this introduces a sign) or any row (since we can transpose).

(5) Calculate the determinants.

(a)
$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 4 \\ 2 & 1 & -2 \end{bmatrix}$$
 (c) $\begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \\ -1 & 5 & 3 \end{bmatrix}$

(b)
$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 7 & 1 & 0 \\ 1 & 2 & 4 & 1 \\ 5 & 10 & 2 & 5 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 0 & 0 & 0 & 2 \\ 1 & 2 & 4 & 5 \\ 0 & 7 & 2 & 9 \\ 0 & 0 & 6 & 4 \end{bmatrix}$$

(6) For what values of
$$\lambda$$
 is the matrix $\begin{bmatrix} 3-\lambda & -2 & 6\\ 1 & -\lambda & 10\\ 0 & 0 & 7-\lambda \end{bmatrix}$ invertible?