MATH 21B, MARCH 7: LINEAR LEAST SQUARES, DATA FITTING, AND AN INTRODUCTION TO DETERMINANTS

(1) We want to find a quadratic $f(x)=c_{2} x^{2}+c_{1} x+c_{0}$ such that $f(-1)=1, f(0)=0, f(1)=2$, and $f(2)=5$. Write down a matrix equation to solve for $\vec{x}=\left[\begin{array}{l}c_{2} \\ c_{1} \\ c_{0}\end{array}\right]$.

Least Square Solutions: Let $A \vec{x}=\vec{b}$ be an inconsistent system of linear equations. A vector \vec{x}^{*} which makes $A \vec{x}^{*}$ as close as possible to \vec{b} is called a least square solution. Such vectors \vec{x}^{*} are solutions to the consistent system

$$
A \vec{x}=\operatorname{proj}_{\mathrm{im}(A)}(\vec{b})=\vec{b}-\vec{b}^{\perp}
$$

(2) Let \vec{b}^{\perp} be the part of \vec{b} orthogonal to $\operatorname{im}(A)$.
(a) Explain why $A^{T} \vec{b}^{\perp}=0$.
(b) Using this fact, show that \vec{x}^{*} satisfies the equation $A^{T} A \vec{x}^{*}=A^{T} \vec{b}$. (The equation $A^{T} A \vec{x}=A^{T} \vec{b}$ is called the normal equation of $A \vec{x}=\vec{b}$.)
(c) Show that if A has linearly independent columns, then $\operatorname{ker}\left(A^{T} A\right)=0$ and therefore $A^{T} A$ is invertible. (Hint: If $A^{T} A \vec{v}=0$ for some vector \vec{v}, then $A \vec{v}$ is orthogonal to all of the columns of A. But remember that $A \vec{v}$ is some linear combination of the columns of A.)

Unique Least Square Solution: If the columns of A are linearly independent (i.e., $\operatorname{ker}(A)=0)$ then the least square solution is unique, and is given by the formula

$$
\vec{x}^{*}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

(3) Given a matrix A with linearly independent columns and a vector \vec{b} which is not on $\operatorname{im}(A)$, use least squares on the inconsistent system $A \vec{x}=\vec{b}$ to calculate a formula for $\operatorname{proj}_{\operatorname{im}(A)}(\vec{b})$. (Note: if the columns of A were orthonormal, then we have the formula $\operatorname{proj}_{\mathrm{im}(A)}(\vec{b})=A A^{T} \vec{b}$. The method above works even if the columns are not orthonormal.)
(4) We are going to use least squares to find the best linear fit $y=r x+s$ for the points $(1,0),(2,1)$, and $(3,3)$.
(a) Write down an inconsistent system $A \vec{x}=\vec{b}$ which solves for the coefficients $\vec{x}=\left[\begin{array}{l}r \\ s\end{array}\right]\left[\begin{array}{l}1 \\ \hline\end{array}\right.$
(b) Compute $A^{T} A$ and its inverse.
(c) Compute $\vec{x}^{*}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}$, the least square solution.
(d) What is the best-fit line? Try plugging in $x=1,2,3$.

[^0]Determinant: The determinant of an $n \times n$ matrix A is defined as the sum

$$
\operatorname{det}(A)=\sum_{\pi}(-1)^{|\pi|} A_{1 \pi(1)} A_{2 \pi(2)} \cdots A_{n \pi(n)}
$$

where π varies over the $n!$ different permutations of the sequence $\{1,2, \ldots, n\}$ and $|\pi|$ is the number of up-crossings in the pattern given by π. The determinant satisfies the following properties (some will only be discussed next class):

- $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
- If A is upper triangular, then the determinant of A is the product of the diagonal entries.
- Scaling a row or column by c scales $\operatorname{det}(A)$ by c.
- A is invertible $\Longleftrightarrow \operatorname{det}(A) \neq 0$.
- Swapping two rows or two columns multiplies $\operatorname{det}(A)$ by -1 .
- Adding a multiple of one row (or column) to another row (or column) does not change $\operatorname{det}(A)$.
Laplace Expansion: We can go along the entries in the first column of A and get an expression for the determinant

$$
\operatorname{det}(A)=A_{11} \operatorname{det}\left(B_{11}\right)-A_{21} \operatorname{det}\left(B_{21}\right)+\ldots+(-1)^{n-1} A_{n 1} \operatorname{det}\left(B_{n 1}\right)
$$

where $B_{i 1}$ refers to the $(n-1) \times(n-1)$ matrix formed by removing the i-th row and first column of A. The same can be done with the entries in any other column (since we can swap columns and this introduces a sign) or any row (since we can transpose).
(5) Calculate the determinants.
(a) $\left[\begin{array}{ccc}1 & 0 & 3 \\ 0 & -1 & 4 \\ 2 & 1 & -2\end{array}\right]$
(c) $\left[\begin{array}{ccc}1 & 2 & 4 \\ 2 & 4 & 8 \\ -1 & 5 & 3\end{array}\right]$
(b) $\left[\begin{array}{cccc}1 & 2 & 0 & -1 \\ 0 & 7 & 1 & 0 \\ 1 & 2 & 4 & 1 \\ 5 & 10 & 2 & 5\end{array}\right]$
(d) $\left[\begin{array}{llll}0 & 0 & 0 & 2 \\ 1 & 2 & 4 & 5 \\ 0 & 7 & 2 & 9 \\ 0 & 0 & 6 & 4\end{array}\right]$
(6) For what values of λ is the matrix $\left[\begin{array}{ccc}3-\lambda & -2 & 6 \\ 1 & -\lambda & 10 \\ 0 & 0 & 7-\lambda\end{array}\right]$ invertible?

[^0]: ${ }^{1}$ Confusing notation: The vector of coefficients, \vec{x}, is unrelated to the x-coordinate of the original question.

