MATH 21B, MARCH 2: GRAM-SCHMIDT, QR DECOMPOSITION, AND ORTHOGONAL MATRICES

Gram-Schmidt Orthonormalization: Given a set of vectors $\vec{v}_1, \ldots, \vec{v}_n$ in \mathbb{R}^m , Gram-Schmidt is an algorithm to generate a set of orthonormal vectors $\vec{u}_1, \ldots, \vec{u}_n$ which have the same span. \vec{u}_i is constructed from \vec{v}_i recursively (starting with \vec{u}_1) by letting

 $ec{w_i} = ec{v_i} - ext{proj}_{V_{i-1}}(ec{v_i}) ~;~ ec{u_i} = ec{w_i}/||ec{w_i}||$

where V_{i-1} is the space spanned by $\vec{u}_1, \ldots, \vec{u}_{i-1}$.

(1) Use Gram-Schmidt to orthonormalize the following sets of vectors.

(a)
$$\vec{v}_1 = \begin{bmatrix} 2\\0\\0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 2\\3\\0 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 6\\4\\4 \end{bmatrix}.$$

(b)
$$\vec{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \vec{v}_1 = \begin{bmatrix} 3\\-1\\-1\\3 \end{bmatrix}, \vec{v}_1 = \begin{bmatrix} 1\\3\\1\\-1 \end{bmatrix}$$

QR decomposition: Let $m \ge n$. Any $m \times n$ matrix A whose columns are linearly independent can be written in the form A = QR $\begin{bmatrix} | & | & | \\ \vec{v}_1 & \cdots & \vec{v}_n \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ \vec{u}_1 & \cdots & \vec{u}_n \\ | & | & | \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ 0 & 0 & \cdots & r_{nn} \end{bmatrix}$

where Q is an $m \times n$ matrix whose columns are *orthonormal* and R is an $n \times n$ matrix which is upper triangular. The vectors $\vec{u}_1, \ldots, \vec{u}_n$ are obtained from $\vec{v}_1, \ldots, \vec{v}_n$ by Gram-Schmidt orthonormalization.

(2) For each set of vectors in (1), write down the QR decomposition of $A = \begin{vmatrix} | & | & | \\ \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \\ | & | & | \end{vmatrix}$.

Transpose: Let A be an $m \times n$ matrix. Then the transpose A^T is an $n \times n$ matrix whose ij-th entry is $(A^T)_{ij} = A_{ji}$. The transpose satisfies the following properties:

•
$$(AB)^T = B^T A^T$$

•
$$(AB)^{T} = B^{T}A^{T}$$
.
• $\vec{v}^{T}\vec{w}$ is the dot product $\vec{v} \cdot \vec{w}$.

•
$$\vec{x} \cdot A\vec{y} = A^T \vec{x} \cdot \vec{y}$$

- (A^T)^T = A
 If A is invertible, (A^T)⁻¹ = (A⁻¹)^T
 rank(A) = rank(A^T)

(3) Let $A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \\ 7 & 4 \\ 5 & 2 \end{bmatrix}$. Find a matrix B whose kernel is the orthogonal complement of im(A).

What can you say about rank(A) and rank(B)?

Orthogonal Matrices: A matrix A is called *orthogonal* if it is square (say $n \times n$) and its columns form an orthonormal basis for \mathbb{R}^n . Equivalently, A is orthogonal if $A^T A = I_n$. (why?)

(4) Which of the following transformations are orthogonal? What geometric transformation does each represent? (One is rotation, one is reflection, one is projection, and one is shear.)

$$\frac{1}{5} \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix} \qquad \qquad \frac{1}{3} \begin{bmatrix} 2 & -2 & -1 \\ -2 & -1 & -2 \\ -1 & -2 & 2 \end{bmatrix} \qquad \qquad \frac{1}{9} \begin{bmatrix} 5 & -4 & -2 \\ -4 & 5 & -2 \\ -2 & -2 & 8 \end{bmatrix} \qquad \qquad \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

(5) Suppose A is an orthogonal $n \times n$ matrix, and \vec{x}, \vec{y} are any vectors in \mathbb{R}^n . Argue that $(A\vec{x}) \cdot (A\vec{y}) = \vec{x} \cdot \vec{y}$. Can you give a geometric interpretation of this fact?