MATH 21B, MARCH 2: GRAM-SCHMIDT, QR DECOMPOSITION, AND ORTHOGONAL MATRICES

Gram-Schmidt Orthonormalization: Given a set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ in \mathbb{R}^{m}, GramSchmidt is an algorithm to generate a set of orthonormal vectors $\vec{u}_{1}, \ldots, \vec{u}_{n}$ which have the same span. \vec{u}_{i} is constructed from \vec{v}_{i} recursively (starting with \vec{u}_{1}) by letting

$$
\vec{w}_{i}=\vec{v}_{i}-\operatorname{proj}_{V_{i-1}}\left(\vec{v}_{i}\right) \quad ; \quad \vec{u}_{i}=\vec{w}_{i} /\left\|\vec{w}_{i}\right\|
$$

where V_{i-1} is the space spanned by $\vec{u}_{1}, \ldots, \vec{u}_{i-1}$.
(1) Use Gram-Schmidt to orthonormalize the following sets of vectors.
(a) $\vec{v}_{1}=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}6 \\ 4 \\ 4\end{array}\right]$.
(b) $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \vec{v}_{1}=\left[\begin{array}{c}3 \\ -1 \\ -1 \\ 3\end{array}\right], \vec{v}_{1}=\left[\begin{array}{c}1 \\ 3 \\ 1 \\ -1\end{array}\right]$.

QR decomposition: Let $m \geq n$. Any $m \times n$ matrix A whose columns are linearly independent can be written in the form $A=Q R$

$$
\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\vec{v}_{1} & \cdots & \vec{v}_{n} \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\vec{u}_{1} & \cdots & \vec{u}_{n} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 n} \\
0 & r_{22} & \cdots & r_{2 n} \\
0 & 0 & \cdots & r_{n n}
\end{array}\right]
$$

where Q is an $m \times n$ matrix whose columns are orthonormal and R is an $n \times n$ matrix which is upper triangular. The vectors $\vec{u}_{1}, \ldots, \vec{u}_{n}$ are obtained from $\vec{v}_{1}, \ldots, \vec{v}_{n}$ by GramSchmidt orthonormalization.
(2) For each set of vectors in (1), write down the QR decomposition of $A=\left[\begin{array}{ccc}\mid & \mid & \mid \\ \vec{v}_{1} & \vec{v}_{2} & \overrightarrow{v_{3}} \\ \mid & \mid & \mid\end{array}\right]$.

Transpose: Let A be an $m \times n$ matrix. Then the transpose A^{T} is an $n \times n$ matrix whose $i j$-th entry is $\left(A^{T}\right)_{i j}=A_{j i}$. The transpose satisfies the following properties:

- $(A B)^{T}=B^{T} A^{T}$.
- $\left(A^{T}\right)^{T}=A$
- $\vec{v}^{T} \vec{w}$ is the dot product $\vec{v} \cdot \vec{w}$.
- If A is invertible, $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
- $\vec{x} \cdot A \vec{y}=A^{T} \vec{x} \cdot \vec{y}$
- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$
(3) Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 1 \\ 7 & 4 \\ 5 & 2\end{array}\right]$. Find a matrix B whose kernel is the orthogonal complement of $\operatorname{im}(A)$.

What can you say about $\operatorname{rank}(A)$ and $\operatorname{rank}(B)$?

Orthogonal Matrices: A matrix A is called orthogonal if it is square (say $n \times n$) and its columns form an orthonormal basis for \mathbb{R}^{n}. Equivalently, A is orthogonal if $A^{T} A=I_{n}$. (why?)
(4) Which of the following transformations are orthogonal? What geometric transformation does each represent? (One is rotation, one is reflection, one is projection, and one is shear.)

$$
\frac{1}{5}\left[\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right] \quad \frac{1}{3}\left[\begin{array}{ccc}
2 & -2 & -1 \\
-2 & -1 & -2 \\
-1 & -2 & 2
\end{array}\right] \quad \frac{1}{9}\left[\begin{array}{ccc}
5 & -4 & -2 \\
-4 & 5 & -2 \\
-2 & -2 & 8
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]
$$

(5) Suppose A is an orthogonal $n \times n$ matrix, and \vec{x}, \vec{y} are any vectors in \mathbb{R}^{n}. Argue that $(A \vec{x}) \cdot(A \vec{y})=\vec{x} \cdot \vec{y}$. Can you give a geometric interpretation of this fact?

